Power Aware IP Lookup Architecture and Algorithm for Green Router

2011 ◽  
Vol 474-476 ◽  
pp. 1684-1689
Author(s):  
Bo Yuan ◽  
Bao Jin Wang ◽  
Bo Zhao

With the development of next generation network which used Ipv6 technology, recent routers architecture meet many questions in performance, complexity and power consumption. With the expanding of network scale, how to implement a low power and MSF for IP lookup is a challenge in green high-powered router design. This paper represents a FIB multi-level mapping routing lookup architecture FMML, the dynamic routing table mapping algorithm is designed to determine the optimal strides for building tree bitmap tries so that the worst-case power consumption of the IP lookup engine is minimized. Experiments using real-life routing tables demonstrate that careful design of the data structure can reduce the power consumption dramatically.

Author(s):  
KIRAN SREE POKKULURI

Internet address lookup is a challenging problem because of the increasing routing table sizes, increased traffic, higher speed links, and the migration to 128 bit IPv6 addresses. Routing lookup involves computation of best matching prefix for which existing solutions scale poorly when traffic in the router increases or when employed for IPV6 address lookup. Our paper describes a novel approach which employs multiple hashing on reduced number of hash tables on which ternary search on levels is applied in parallel. This scheme handles large number of prefixes generated by controlled prefix expansion by reducing collision and distributing load fairly in the hash buckets thus providing faster worst case and average case lookups. The approach we describe is fast, simple, scalable, parallelizable, and flexible.


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miguel Angel Lastras-Montaño ◽  
Osvaldo Del Pozo-Zamudio ◽  
Lev Glebsky ◽  
Meiran Zhao ◽  
Huaqiang Wu ◽  
...  

AbstractRatio-based encoding has recently been proposed for single-level resistive memory cells, in which the resistance ratio of a pair of resistance-switching devices, rather than the resistance of a single device (i.e. resistance-based encoding), is used for encoding single-bit information, which significantly reduces the bit error probability. Generalizing this concept for multi-level cells, we propose a ratio-based information encoding mechanism and demonstrate its advantages over the resistance-based encoding for designing multi-level memory systems. We derive a closed-form expression for the bit error probability of ratio-based and resistance-based encodings as a function of the number of levels of the memory cell, the variance of the distribution of the resistive states, and the ON/OFF ratio of the resistive device, from which we prove that for a multi-level memory system using resistance-based encoding with bit error probability x, its corresponding bit error probability using ratio-based encoding will be reduced to $$x^2$$ x 2 at the best case and $$x^{\sqrt{2}}$$ x 2 at the worst case. We experimentally validated these findings on multiple resistance-switching devices and show that, compared to the resistance-based encoding on the same resistive devices, our approach achieves up to 3 orders of magnitude lower bit error probability, or alternatively it could reduce the cell’s programming time and programming energy by up 5–10$$\times$$ × , while achieving the same bit error probability.


2021 ◽  
Author(s):  
Bin Liu ◽  
Kaiqi Li ◽  
Wanliang Liu ◽  
Jian Zhou ◽  
Liangcai Wu ◽  
...  

2015 ◽  
Vol 25 (03) ◽  
pp. 1640013
Author(s):  
Miroslav Valka ◽  
Alberto Bosio ◽  
Luigi Dilillo ◽  
Patrick Girard ◽  
Arnaud Virazel ◽  
...  

Power gating techniques have been adopted so far to reduce the static power consumption of integrated circuits (ICs). Power gating is usually implemented by means of several power switches (PSs). Manufacturing defects affecting PSs can lead to increase in the actual static power consumption and, in the worst case, they can completely isolate a functional block in the IC. Thus, efficient test and diagnosis solutions are needed. In this paper, we present a novel Design for Test and Diagnosis (DfTD) solution able to increase the test quality and diagnosis accuracy of PSs. The proposed approach has been validated through SPICE simulations on ITC’99 benchmark circuits as well as on industrial test cases.


2016 ◽  
Vol 40 (3) ◽  
pp. 885-895 ◽  
Author(s):  
Xuanpeng Li ◽  
Emmanuel Seignez

Driver inattention, either driver drowsiness or distraction, is a major contributor to serious traffic crashes. In general, most research on this topic studies driver drowsiness and distraction separately, and is often conducted in a well-controlled, simulated environment. By considering the reliability and flexibility of real-time driver monitoring systems, it is possible to evaluate driver inattention by the fusion of multiple selected cues in real life scenarios. This paper presents a real-time, visual-cue-based driver monitoring system, which can track both multi-level driver drowsiness and distraction simultaneously. A set of visual cues are adopted via analysis of drivers’ physical behaviour and driving performance. Driver drowsiness is evaluated using a multi-level scale, by applying evidence theory. Additionally, a general framework of extensive hierarchical combinations is used to generate a probabilistic evaluation of driving risk in real time. This driver inattention monitoring system with multimodal fusion has been proven to improve the accuracy of risk evaluation and reduce the rate of false alarms, and acceptance of the system is recommended.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bambang A. B. Sarif ◽  
Mahsa Pourazad ◽  
Panos Nasiopoulos ◽  
Victor C. M. Leung

There is an increasing interest in using video sensor networks (VSNs) as an alternative to existing video monitoring/surveillance applications. Due to the limited amount of energy resources available in VSNs, power consumption efficiency is one of the most important design challenges in VSNs. Video encoding contributes to a significant portion of the overall power consumption at the VSN nodes. In this regard, the encoding parameter settings used at each node determine the coding complexity and bitrate of the video. This, in turn, determines the encoding and transmission power consumption of the node and the VSN overall. Therefore, in order to calculate the nodes’ power consumption, we need to be able to estimate the coding complexity and bitrate of the video. In this paper, we modeled the coding complexity and bitrate of the H.264/AVC encoder, based on the encoding parameter settings used. We also propose a method to reduce the model estimation error for videos whose content changes within a specified period of time. We have conducted our experiments using a large video dataset captured from real-life applications in the analysis. Using the proposed model, we show how to estimate the VSN power consumption for a given topology.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Warattaya Chinnakum ◽  
Laura Berrout Ramos ◽  
Olugbenga Iyiola ◽  
Vladik Kreinovich

Purpose In real life, we only know the consequences of each possible action with some uncertainty. A typical example is interval uncertainty, when we only know the lower and upper bounds on the expected gain. A usual way to compare such interval-valued alternatives is to use the optimism–pessimism criterion developed by Nobelist Leo Hurwicz. In this approach, a weighted combination of the worst-case and the best-case gains is maximized. There exist several justifications for this criterion; however, some of the assumptions behind these justifications are not 100% convincing. The purpose of this paper is to find a more convincing explanation. Design/methodology/approach The authors used utility approach to decision-making. Findings The authors proposed new, hopefully more convincing, justifications for Hurwicz’s approach. Originality/value This is a new, more intuitive explanation of Hurwicz’s approach to decision-making under interval uncertainty.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1789 ◽  
Author(s):  
Apostolos Karalis ◽  
Dimitrios Zorbas ◽  
Christos Douligeris

IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15.4-TSCH network relies on the periodic transmissions of network advertising frames called enhanced beacons (EB). The scheduling of EB transmissions plays a crucial role both in the joining time and in the power consumption of the nodes. The existence of collisions between EB is an important factor that negatively affects the performance. In the worst case, all the neighboring EB transmissions of a node may collide, a phenomenon which we call a full collision. Most of the EB scheduling methods that have been proposed in the literature are fully or partially based on randomness in order to create the EB transmission schedule. In this paper, we initially show that the randomness can lead to a considerable probability of collisions, and, especially, of full collisions. Subsequently, we propose a novel autonomous EB scheduling method that eliminates collisions using a simple technique that does not increase the power consumption. To the best of our knowledge, our proposed method is the first non-centralized EB scheduling method that fully eliminates collisions, and this is guaranteed even if there are mobile nodes. To evaluate our method, we compare our proposal with recent and state-of-the-art non-centralized network-advertisement scheduling methods. Our evaluation does not consider only fixed topology networks, but also networks with mobile nodes, a scenario which has not been examined before. The results of our simulations demonstrate the superiority of our method in terms of joining time and energy consumption.


Sign in / Sign up

Export Citation Format

Share Document