Theoretical and Experimental Research on Compressive Strength of High Fly-Ash Content Concrete

2011 ◽  
Vol 477 ◽  
pp. 257-262 ◽  
Author(s):  
Hong Mei Ai ◽  
Li Jiu Wang ◽  
Jing Wei ◽  
Jun Ying Bai ◽  
Pu Guang Lu

Introduced the concept of “Cementitious Coefficient” of fly ash, theoretical formula of strength of HFCC at a certain age was found with two variables: actual water-binder ratio and micro-aggregate-binder ratio. Development regularity of compressive strength of HFCC was studied and formula of long-term strength coefficient D28t was settled. Influence of actual water-binder ratio and micro-aggregate-binder ratio on long-term strength of HFCC was analyzed. Experimental results showed that along with the single-factor increase of actual water-binder ratio and micro-aggregate-binder ratio, growth rate of long-term strength of HFCC increased; influence of actual water-binder ratio was deeper than that of micro-aggregate-binder ratio.

2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


2011 ◽  
Vol 250-253 ◽  
pp. 445-449
Author(s):  
Li Wei Xu ◽  
Jian Lan Zheng

The hydration degree of binders and cement is investigated by measuring the adiabatic- temperature rise of concrete at low water-binder ratio with different fly-ash content. The results denote that, with a constant water-binder ratio, both of the hydration degree of binders and that of cement decrease with the increasing fly-ash content in the early stage. In a later stage, however, the hydration degree of cement increases with the increasing fly-ash content and the hydration degree of binders peaks when the fly-ash content is 35%. Fly ash is one of the mineral admixture of which high-performance concrete is made up. It brings down the rise of concrete temperature significantly and helps solve the problems of shrinkage and crack of concrete structure. Because the hydration mechanism in common concrete is different from that in concrete with low water-binder ratio, and the hydration environment is different between concrete and cement pastes, to determine the adiabatic-temperature rise of concrete directly conforms to the actual situation. The adiabatic-temperature rise, adiabatic-temperature-rise rate, hydration degree of both binders and cement are investigated by measuring adiabatic-temperature rise of concrete with different fly-ash content.


2017 ◽  
Vol 7 (2) ◽  
pp. 53-65
Author(s):  
Su Wai Hnin ◽  
Pakawat Sancharoen ◽  
Somnuk Tangtermsirikul

The aim of this paper is to investigate the effects of mix proportion on electrical resistivity of concrete with fly ash. The electrical resistivity of concrete is measured by using four Wenner probes. The varied parameters in this study were water/binder ratio, fly ash content, and paste content. Electrical resistivity of water-saturated concrete at several different ages was studied and compared with compressive strength and rapid chloride penetration. Based on experimental results, a good relationship was obtained between results of compressive strength and rapid chloride penetration with electrical resistivity of concrete. The results of this study can be applied further to predict electrical resistivity of concrete when mix proportions are provided. According to the results, lower water/binder ratio concrete had higher resistivity than those with higher water/binder ratios. When cement was replaced at 40% by fly ash, electrical resistivity increased four times when compared to that of OPC concrete.


2016 ◽  
Vol 258 ◽  
pp. 587-590
Author(s):  
Aneta Nowak-Michta

Effect of quantity and quality of fly ash and compressive strength of concretes with their addition on abrasion resistance previously subjected to scaling is analyzed in the paper. The abrasion resistance was measured in Böhme test according to EN 1338: 2005. The cement was replaced with 20, 35, and 50% of Class F siliceous fly ash in three categories of losses on ignition A, B and C by mass. The water-binder ratio, the air-entrainment and the workability of mixtures were maintained constant at 0.38, 4,5% and 150 mm respectively.Prior scaling causes a decrease in abrasion resistance of fly ash concretes. In addition, both quantitative and qualitative fly ash parameters and compressive strength have an influence on abrasion damage.


2012 ◽  
Vol 178-181 ◽  
pp. 795-798 ◽  
Author(s):  
Qi Na Sun ◽  
Jing Miao Li ◽  
Bao Quan Huo ◽  
Ji Bing Wang

Sulfoaluminate cement (SAC) was utilized for the solidification/stabilization of fly ash from municipal solid waste (MSW) incinerators. The effects of fly ash amount and water/binder ratio were investigated on compressive strength and heavy metals leaching toxicity of solidified matrices at different curing times. The results showed that prolonged curing time, lower fly ash amount and water/binder ratio enhanced the compressive strength and decreased the leaching concentrations of Zn, Pb and Cu. For 28 days cured matrices with fly ash amount 50% and water/binder ratio 0.30, the compressive strength was 32.6 MPa and the leaching concentrations of Zn, Pb and Cu were 14.73, 0.75 and 0.43 mg/L respectively. The leaching concentrations of Zn, Pb and Cu met the demand of GB 5085.3-2007. SAC is proved to be effective for MSW incinerator fly ash solidification/stabilization and high performance matrices for disposal and reuse may be achieved with further formula optimization.


2011 ◽  
Vol 675-677 ◽  
pp. 61-64
Author(s):  
Yu Zhu ◽  
Ying Zi Yang ◽  
Yan Yao

In order to investigate flowability and drying shrinkage of ECC, mini-slump flow deformation test and drying shrinkage are employed to analyse the influence of fly ash on the flowability and shrinkage of ECC. The water-binder ratio is kept at 0.25. The replacement ratio of cement by fly ash is 50%, 60%, 70% and 80%, respectively. The experimental results show that fluidity of fresh cment paste increases obviously as the fly ash becomes larger. The drying shrinkage of ECC specimens is greatly reduced as the content of fly ash increases from 50% to 80%. The measured drying shrinkage strian of ECC specimens with 80% fly ash at 28 days is less than 1000×10-6. 25% reduction of drying shrinkage of ECC is found when the fly ash content increases from 50% to 80%.


2013 ◽  
Vol 395-396 ◽  
pp. 433-438 ◽  
Author(s):  
Ye Zhang ◽  
Peng Xuan Duan ◽  
Bao Sheng Jia ◽  
Lei Li

In this paper, compared with common fly ash, the low-silicon coal gangue fly ash is used to produce fly ash autoclaved aerated concrete. The influences of water binder ratio, coal gangue fly ash content, calcareous content and conditioning agents on the compressive strength of the autoclaved aerated concrete are investigated. The results indicate the coal gangue fly ash has different properties from the common fly ash such as its granule appearance and the activity as AAC siliceous raw material. It is noting that the coal gangue fly ash can also be used to prepare AAC blocks by optimizing the raw material formulation and procedure and its B05 product can reach the China top industrial standard.


2020 ◽  
Vol 861 ◽  
pp. 429-437
Author(s):  
Yang Zhao ◽  
Hong Fa Yu ◽  
Wei Dong Wang ◽  
Yue Li

In order to explore the influence of a new mixed type antifreeze material on the flexural strength of concrete for road, the orthogonal design method was used to conduct experimental research on six factors including the water-binder ratio, the antifreeze material content, the fly ash content, the feeding process, the shape of the antifreeze material and the pre-absorption of antifreeze material. The influence degree of various factors on the flexural strength of concrete was studied, and the mixing ratio design method of concrete for road mixed with the antifreeze material was given. It was found that the water-binder ratio is the main factor affecting the strength of the concrete and that when the amount of antifreeze material is less than 15%, the effect on the strength is small. The influence of other factors on the strength is greatly influenced by the interaction of water-binder ratio. When it comes to the mix design, the content of gelling material is 500 kg/m3, and the water-binder ratio changes from 0.35 to 0.43 under different traffic levels. The recommended antifreeze material content and fly ash content is 10% and 15% respectively. It’s also suggested that the antifreeze material should be pre-absorbed, and the cement sand and stone be mixed before the antifreeze material is put into the mixing.


2011 ◽  
Vol 250-253 ◽  
pp. 464-468
Author(s):  
Hong Tao Wang ◽  
Ju Hui Cao ◽  
Shuang Mei Li ◽  
Ming Xue

The influence of water binder ratio, content of borax and fly ash on the fluidity and strength of phosphate concrete were investigated. Results showed that the slump and slump flow of phosphate concrete improved with content of water and borax increasing. But the strength decreased, especially early strength. While the mixing amount of borax was less than 1.5% of the magnesium phosphate cement, the influence on later strength was relatively less. The fluidity decreased significantly and the cohesiveness and water retention improved while the content of fly ash was between 10% and 30%.The compressive strength increased while the content of fly ash was 10%.The better curing methods was curing in the natural conditions, the compressive increased with the age prolonged.


2011 ◽  
Vol 308-310 ◽  
pp. 2555-2559
Author(s):  
Hong Mei Ai ◽  
Pu Guang Lu ◽  
Jun Ying Bai ◽  
Jing Jing Wei

To the High fly-ash content concrete(abbreviated HFCC) whose fly-ash adding amount is 50%~70%, the influence of actual water-binder ratio, fly-ash content, quality of fly-ash and compression strength on the freezing resistance of HFCC were studied; The critical freeze-thaw cycle times in this paper involved with mass loss rate Wn=5% and relative dynamic elastic modulus P=60%, the relationship between the critical freeze-thaw cycle times and the 28d compression strength of HFCC was analyzed; To HFCC without air-entraining agent, the experiment results showed that the freezing resistance decreased with the increase of actual water-binder ratio, the increase of fly-ash content and the reduce of fly-ash quality. The freeze-thaw damage of HFCC dues to the freeze-thaw degradation results from surface denudation.


Sign in / Sign up

Export Citation Format

Share Document