The Effects of Machining Parameters on the Position of Resultant Force in Sawing of Granite

2011 ◽  
Vol 487 ◽  
pp. 357-360
Author(s):  
Cong Fu Fang ◽  
Xi Peng Xu

The effects of the machining parameters on the relative position of the resultant force were analyzed in circular sawing of granite with a diamond segmented blade. The horizontal and vertical force components and the power were measured. Calculated tangential and normal force components were subsequently used to calculate the relative position of resultant force besides the horizontal and vertical force components. It was found that the value of the relative position of resultant force in down sawing is less than that in up sawing. The shift of sawing swarf has heavy influence on the relative position of resultant force.

2006 ◽  
Vol 315-316 ◽  
pp. 103-107
Author(s):  
Yi Qing Yu ◽  
Y.F. Zhang ◽  
Yuan Li ◽  
Xi Peng Xu

The present study was undertaken to examine the feasibility of circular sawing of granite with a newly shaped diamond saw blade. Three slots were formed on each side of each segment of the saw blade. Side-slotted segments and traditional segments were compared under same operating parameters. Measurements were made of the horizontal and vertical force components and the consumed power in order to obtain the tangential and normal force components. The surfaces of worn blade segments were examined by a scanning electron microscope. The consumed powers, normal and tangential force components for the side-slotted segments were found to be lower than those of the traditional segments. The position of resultant forces for the side-slotted segments is a little further away from the bottom of the cutting zone than the traditional segments. SEM observations indicated that the wear of the side-slotted segments was similar to sawing with traditional segments.


2000 ◽  
Vol 123 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Xipeng Xu ◽  
Yuan Li ◽  
Stephen Malkin

An investigation is reported of the forces and energy in circular sawing and grinding of gray granite. Measurements were made of the forces and power over a wide range of sawing and grinding conditions. Calculated tangential force components were found to be much different than the measured horizontal force components for sawing, but the two forces were almost identical for grinding. The location of the resultant force was proportionally further away from the bottom of the cutting zone with longer contact lengths. For sawing, the normal force per grain was nearly proportional to the calculated undeformed chip thickness. The G-ratios at different sawing rates reached a maximum value at the same intermediate undeformed chip thickness, which was attributed to a transition in the diamond wear mechanism from attrition to fracture at a critical normal force per grain. SEM observations indicated material removal mainly by brittle fracture, with some evidence of ductile plowing especially for grinding and to a lesser extent for sawing. The corresponding fracture energy was estimated to constitute a negligible portion of the total energy expenditure. About 30 percent of the sawing energy might be due to the interaction of the swarf with the applied fluid and bond matrix. Most of the energy for sawing and grinding is attributed to ductile plowing. Analogous to recent studies on grinding of ceramics and glass, the power per unit width was found to increase linearly with the generation of plowed surface area per unit width.


2009 ◽  
Vol 16-19 ◽  
pp. 1143-1148
Author(s):  
Yi Qing Yu ◽  
Yuan Li ◽  
Xi Peng Xu

Experimental studies were undertaken to investigate the mechanisms for circular sawing of refractory bricks with diamond segmented saw blades. Three kinds of diamond segments of different hardness were fabricated for the saw blades. The vertical and horizontal force components and the spindle power were measured in sawing. Based on the measurements of force and power, the specific energy and the normal force per diamond grit were obtained. The normal force per grit in the sawing of refractory bricks was found to be only 5% of the static compressive strength of diamonds used in the present study, but fractures of diamonds were still popular on the segment working surfaces after sawing. The power, horizontal force, and the specific energy were found to increase with segment hardness. The specific energy obtained from the measured power was basically comparable to the values obtained from a theoretical equation to calculate the specific energy associated with slurry erosion to the bond matrix of segments.


2004 ◽  
Vol 471-472 ◽  
pp. 77-81 ◽  
Author(s):  
Xi Peng Xu ◽  
Y.B. Hong ◽  
S. Chen

An investigation is reported of the performance of diamond impregnated segments in three machining processes - circular sawing of granite with diamond segments, dressing of diamond segments with refractory bricks and surface grinding of diamond segments with an alumina wheel. Two kinds of segments were fabricated by incorporating diamonds (either coated or uncoated) into an iron-based bond matrix. Measurements were made of the horizontal and vertical force components in the machining processes. SEM was used to examine the diamond-matrix bonding states and the ground surfaces of the segments. The changes of forces and segment wear (weight loss and wear performance) were found to be basically consistent for the three machining processes.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2070 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Monika Kulisz ◽  
Mariusz Kłonica ◽  
Jakub Matuszak

This paper set out to investigate the effect of cutting speed vc and trochoidal step str modification on selected machinability parameters (the cutting force components and vibration). In addition, for a more detailed analysis, selected surface roughness parameters were investigated. The research was carried out for two grades of magnesium alloys—AZ91D and AZ31—and aimed to determine stable machining parameters and to investigate the dynamics of the milling process, i.e., the resulting change in the cutting force components and in vibration. The tests were performed for the specified range of cutting parameters: vc = 400–1200 m/min and str = 5–30%. The results demonstrate a significant effect of cutting data modification on the parameter under scrutiny—the increase in vc resulted in the reduction of the cutting force components and the displacement and level of vibration recorded in tests. Selected cutting parameters were modelled by means of Statistica Artificial Neural Networks (Radial Basis Function and Multilayered Perceptron), which, furthermore, confirmed the suitability of neural networks as a tool for prediction of the cutting force and vibration in milling of magnesium alloys.


Author(s):  
Hiroaki Amakawa ◽  
Kenji Fukuzawa ◽  
Mitsuhiro Shikida ◽  
Hedong Zhang ◽  
Shitaro Itoh

Conventional friction force microscopes (FFMs) had the disadvantage of low force sensitivity due to mechanical interference between torsion caused by friction force and deflection by normal force. In order to overcome disadvantage, we developed a dual-axis micro-mechanical probe, which measures the lateral force by the double cantilever and the vertical force by the torsion beam. However, the calibration method of the lateral force has not been established. In this study, we present a new calibration method using a step-structure.


1989 ◽  
Vol 1 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Nancy L. Greer ◽  
Joseph Hamill ◽  
Kevin R. Campbell

Ground reaction force patterns during walking were observed in 18 children 3 and 4 years of age. The children walked barefoot at a self-chosen walking pace. Selected variables representing the vertical, anteroposterior, and mediolateral force components were evaluated. The results indicated that children in this age range contact the ground with greater vertical force measures relative to body mass than do adults. In addition, the minimum vertical force was lower, the transition from braking to propulsion occurred earlier, and the mediolateral force excursions were higher than typically found in adults. When the children were divided into groups on the basis of sex, differences were observed between those groups. The boys exhibited a greater difference in the vertical peak forces, a lower minimum force, a greater braking force, and a higher mediolateral force excursion value. The results indicated that children display a different ground reaction force pattern than do adults and that differences between boys and girls may be observed as early as ages 3 and 4 years.


2006 ◽  
Vol 315-316 ◽  
pp. 185-189 ◽  
Author(s):  
Hui Huang ◽  
G.Q. Zhang ◽  
Y.J. Zhan ◽  
Xi Peng Xu

An experimental study was carried out to investigate the process in surface grinding of two kinds of typical granite with a brazed diamond wheel. The horizontal and vertical forces were measured to obtain the data for the tangential and vertical force components as well as specific energy. Micrograph observations on tool surface and granite surface were coupled to check the prevailing mechanisms for material removal. Although the red granite is more difficult to machine than the black granite, according to factory records, the normal and tangential force components and specific energy for red granite were lower than that for black one, which might be attributed to the high height protrusion of brazed tool and the more ductile flow occurred in the grinding arc of black granite compared to the red one.


2014 ◽  
Vol 2 (4) ◽  
Author(s):  
Jing Shi ◽  
Chunhui Ji ◽  
Yachao Wang ◽  
Steve Hsueh-Ming Wang

Three-dimensional (3D) molecular dynamics (MD) simulation is performed to study the tool/chip interface friction phenomenon in machining of polycrystalline copper at atomistic scale. Three polycrystalline copper structures with the equivalent grain sizes of 12.25, 7.72, and 6.26 nm are constructed for simulation. Also, a monocrystalline copper structure is simulated as the benchmark case. Besides the grain size, the effects of depth of cut, cutting speed, and tool rake angle are also considered. It is found that the friction force and normal force distributions along the tool/chip interface in both polycrystalline and monocrystalline machining exhibit similar patterns. The reduction in grain size overall increases the magnitude of normal force along the tool/chip interface, but the normal forces in all polycrystalline cases are smaller than that in the monocrystalline case. In atomistic machining of polycrystalline coppers, the increase of depth of cut consistently increases the normal force along the entire contact area, but this trend cannot be observed for the friction force. In addition, both higher cutting speed and more negative tool rake angle do not bring significant changes to the distributions of normal and friction forces on the interface, but both factors tend to increase the magnitudes of the two force components.


Sign in / Sign up

Export Citation Format

Share Document