Performance of Diamond Segments in Different Machining Processes

2004 ◽  
Vol 471-472 ◽  
pp. 77-81 ◽  
Author(s):  
Xi Peng Xu ◽  
Y.B. Hong ◽  
S. Chen

An investigation is reported of the performance of diamond impregnated segments in three machining processes - circular sawing of granite with diamond segments, dressing of diamond segments with refractory bricks and surface grinding of diamond segments with an alumina wheel. Two kinds of segments were fabricated by incorporating diamonds (either coated or uncoated) into an iron-based bond matrix. Measurements were made of the horizontal and vertical force components in the machining processes. SEM was used to examine the diamond-matrix bonding states and the ground surfaces of the segments. The changes of forces and segment wear (weight loss and wear performance) were found to be basically consistent for the three machining processes.

2005 ◽  
Vol 291-292 ◽  
pp. 85-90 ◽  
Author(s):  
Xi Peng Xu ◽  
Q.L. Han ◽  
Yuan Li

In this present work, an experimental study was carried out to investigate the wear of metal-bonded diamond tools (specimens) in five abrasive processes – stirring diamond specimens in rock slurries and surface grinding the specimens with a vitrified alumina wheel as well as circular sawing of refractory bricks, vitrified silicon carbide wheels and natural granite with segmented diamond blades. Three diamond specimens of different hardness were fabricated by hot pressing. In addition to following the worn morphologies of the diamond tools, forces and power were also monitored in four abrasive processes. During stirring and surface grinding, the wear of the diamond specimens decreased with increasing specimen hardness, whereas the vertical force in surface grinding increased with the specimen hardness. In sawing of granite, however, the wear of the blades was closely related to the vertical force generated in sawing rather than the hardness of the diamond segments. The trends of force changes in sawing of refractory bricks were comparable to those in sawing of granite. But the force ratios in sawing of the SiC wheel were found to be much higher than those in sawing of other two materials.


2006 ◽  
Vol 315-316 ◽  
pp. 185-189 ◽  
Author(s):  
Hui Huang ◽  
G.Q. Zhang ◽  
Y.J. Zhan ◽  
Xi Peng Xu

An experimental study was carried out to investigate the process in surface grinding of two kinds of typical granite with a brazed diamond wheel. The horizontal and vertical forces were measured to obtain the data for the tangential and vertical force components as well as specific energy. Micrograph observations on tool surface and granite surface were coupled to check the prevailing mechanisms for material removal. Although the red granite is more difficult to machine than the black granite, according to factory records, the normal and tangential force components and specific energy for red granite were lower than that for black one, which might be attributed to the high height protrusion of brazed tool and the more ductile flow occurred in the grinding arc of black granite compared to the red one.


2006 ◽  
Vol 315-316 ◽  
pp. 103-107
Author(s):  
Yi Qing Yu ◽  
Y.F. Zhang ◽  
Yuan Li ◽  
Xi Peng Xu

The present study was undertaken to examine the feasibility of circular sawing of granite with a newly shaped diamond saw blade. Three slots were formed on each side of each segment of the saw blade. Side-slotted segments and traditional segments were compared under same operating parameters. Measurements were made of the horizontal and vertical force components and the consumed power in order to obtain the tangential and normal force components. The surfaces of worn blade segments were examined by a scanning electron microscope. The consumed powers, normal and tangential force components for the side-slotted segments were found to be lower than those of the traditional segments. The position of resultant forces for the side-slotted segments is a little further away from the bottom of the cutting zone than the traditional segments. SEM observations indicated that the wear of the side-slotted segments was similar to sawing with traditional segments.


2009 ◽  
Vol 16-19 ◽  
pp. 1143-1148
Author(s):  
Yi Qing Yu ◽  
Yuan Li ◽  
Xi Peng Xu

Experimental studies were undertaken to investigate the mechanisms for circular sawing of refractory bricks with diamond segmented saw blades. Three kinds of diamond segments of different hardness were fabricated for the saw blades. The vertical and horizontal force components and the spindle power were measured in sawing. Based on the measurements of force and power, the specific energy and the normal force per diamond grit were obtained. The normal force per grit in the sawing of refractory bricks was found to be only 5% of the static compressive strength of diamonds used in the present study, but fractures of diamonds were still popular on the segment working surfaces after sawing. The power, horizontal force, and the specific energy were found to increase with segment hardness. The specific energy obtained from the measured power was basically comparable to the values obtained from a theoretical equation to calculate the specific energy associated with slurry erosion to the bond matrix of segments.


2011 ◽  
Vol 487 ◽  
pp. 357-360
Author(s):  
Cong Fu Fang ◽  
Xi Peng Xu

The effects of the machining parameters on the relative position of the resultant force were analyzed in circular sawing of granite with a diamond segmented blade. The horizontal and vertical force components and the power were measured. Calculated tangential and normal force components were subsequently used to calculate the relative position of resultant force besides the horizontal and vertical force components. It was found that the value of the relative position of resultant force in down sawing is less than that in up sawing. The shift of sawing swarf has heavy influence on the relative position of resultant force.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
X. P. Zhu ◽  
P. C. Du ◽  
Y. Meng ◽  
M. K. Lei ◽  
D. M. Guo

Inverse problem of manufacturing is studied under a framework of high performance manufacturing of components with functional surface layer, where controllable generation of surface integrity is emphasized due to its pivotal role determining final performance. Surface modification techniques capable of controlling surface integrity are utilized to verify such a framework of manufacturing, by which the surface integrity desired for a high performance can be more effectively achieved as reducing the material and geometry constraints of manufacturing otherwise unobtainable during conventional machining processes. Here, thermal spraying of WC–Ni coatings is employed to coat stainless steel components for water-lubricated wear applications, on which a strategy for direct problem from process to performance is implemented with surface integrity adjustable through spray angle and inert N2 shielding. Subsequently, multiple surface integrity parameters can be evaluated to identify the major ones responsible for wear performance by elucidating the wear mechanism, involving surface features (coating porosity and WC phase retention) and surface characteristics (microhardness, elastic modulus, and toughness). The surface features predominantly determine tribological behaviors of coatings in combination with the surface characteristics that are intrinsically associated with the surface features. Consequently, the spray process with improved N2 shielding is designed according to the desired surface integrity parameters for higher wear resistance. It is demonstrated that the correlations from processes to performance could be fully understood and established via controllable surface integrity, facilitating solution to inverse problem of manufacturing, i.e., realization of a material and geometry integrated manufacturing.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1316-1319
Author(s):  
Liang Peng Jiang ◽  
Ke Ping Zhang ◽  
Jun Min Ma

Wheat milling process involves multiple grinding procedures, the wheat powder particles size in different grinding procedure are difference. In order to study the influence of particle size of wheat powder on roller wear performance in different grinding procedure, abrasion experiments were carried out by MLS-225 three-body abrasive wear tester, while different sizes were chosen as abrasive, alloy white iron which frequently used as roller metal materials was chosen as wear sample, wear weight loss and surface microstructure were chosen as the main evaluation indicators. The results showed that the weight loss of samples were showed a linear relationship with wheat the size of wheat powder. The main wear behavior was mainly mechanical polishing while particle sizes was smaller one. For the larger size, wear was made by multiple plastic deformation and low cycle fatigue wear mechanism.


2016 ◽  
Vol 852 ◽  
pp. 241-247 ◽  
Author(s):  
K. Babu

In striving to remain competitive in the global market, the concept of optimization of manufacturing processes has been extensively employed to meet the diverse production requirements. Optimization analysis of machining processes is usually based on either minimizing or maximizing certain objective functions. Recently, various non-traditional optimization techniques have evolved to optimize the process parameters of machining processes. The objective of this work is to study the effectiveness of the most commonly used non-traditional optimization methods as applied to a particular machining optimization problem. In this work, surface grinding processes are optimized using i) Particle Swarm Optimization (PSO) ii) Adaptive Genetic Algorithm (AGA) iii) Simulated Annealing (SA) and iv) Memetic algorithm (MA). Memetic algorithm used here has two variations as MA-1 and MA-2, each having the combination of PSO and SA and AGA and SA respectively. The mathematical model of surface grinding operations was adopted from a literature. A computer program was written in Visual C++ for the optimization computations. The computation results of various optimization methods are compared and it is observed that the results of PSO method have outperformed the results of other methods in terms of the combined objective function (COF).


2014 ◽  
Vol 670-671 ◽  
pp. 554-559
Author(s):  
Sheng Shou Li ◽  
Tian Quan Liang ◽  
Xian Fang Yang ◽  
Cui Hua Zhao

The characteristics in microstructure, surface morphology, chemical composition, hardness and wear resistance of the three protective iron-based compound coatings prepared by Supersonic Arc Spraying (HVAS), were investigated by X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Energy disperse spectroscopy (EDS) and Rockwell apparatus in this paper. It is indicated that the three coatings are typical layer and compact structures. The coatings are composed of Fe (s.s) phase and various kinds of ferric oxides, chrome carbides and/or intermetallic phase distributing along the interface of lamellar layers. More Cr and Ti, Al elements in the cored wires can degrease the diameter and alternate the morphologies of the holes in the coating, resulting from the formation of oxides, carbides and intermetallic phase during depositing the coating. The results indicate the SXTiAlC coating shows the most excellent wear performance among the three coatings. The wear behavior and mechanism are discussed.


2013 ◽  
Vol 815 ◽  
pp. 574-578
Author(s):  
Xiao Zhen Liu ◽  
Yu Zhen Li ◽  
Ling Ling Song ◽  
Xiao Dong Yu ◽  
Wei Ting Lu

TiB2and Gd2O3were used as codeposited particles for the first time in preparing Ni-TiB2-Gd2O3composite coatings to improve its performance. Ni-TiB2-Gd2O3composite coatings were prepared by electrodeposition method from a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2and Gd2O3particles. The content of codeposited TiB2and Gd2O3in the composite coatings was controlled by the addition of different TiB2and Gd2O3particles concentrations in the solution, respectively. The effects of TiB2and Gd2O3content on microhardness, wear weight loss, and friction coefficient of composite coatings were investigated, respectively. Ni-TiB2-Gd2O3composite coatings shows higher microhardness and lower wear weight loss, friction coefficient than those of the pure Ni coating and Ni-TiB2composite coatings. The wear weight loss of Ni-TiB2-Gd2O3composite coatings is lower 9.13 and 1.59 times than that of the pure Ni coating and Ni-TiB2composite coatings, respectively. The friction coefficients of pure Ni coating, Ni-TiB2and Ni-TiB2-Gd2O3composite coatings are 0.723, 0.815 and 0.43, respectively. Ni-TiB2-Gd2O3composite coatings shows the least friction coefficient among the three coatings. Gd2O3particles in composite coatings serves as solid lubricant between contact surfaces, decreases the friction coefficient, abates the wear and increases the corrosion resistance of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Gd2O3particles in the composite coatings are closely related to the content of Gd2O3particles in the composite coatings.


Sign in / Sign up

Export Citation Format

Share Document