Tempering Response to Different Morphologies of Martensite in Tensile Deformation of Dual-Phase Steel

2012 ◽  
Vol 510-511 ◽  
pp. 80-88
Author(s):  
E. Ahmad ◽  
T. Manzoor ◽  
M. Sarwar ◽  
M. Arif ◽  
N. Hussain

A low alloy steel containing 0.2%C was heat treated with three cycles of heat treatments with the aim to acquire different morphologies of martensite in dual phase microstructure. Microscopic examination revealed that the morphologies consisting of grain boundary growth, scattered laths and bulk form of martensite were obtained. These morphologies have their distinct patterns of distribution in the matrix (ferrite). In tensile properties observations the dual phase steel with bulk morphology of martensite showed minimum of ductility but high tensile strength as compared to other two morphologies. This may be due to poor alignments of bulk martensite particles along tensile axes during deformation. Tempering was employed with various holding times at 550°C to induce ductility in the heat treated material. The tempering progressively increased the ductility by increasing holding time. However, tempering response to strengths and ductilities was different to all three morphologies of martensite.

2011 ◽  
Vol 284-286 ◽  
pp. 1101-1105
Author(s):  
Hong Mei Zhang ◽  
Li Feng Qiao

The effect of reduction on the microstructure refinement and mechanical properties of the as-hot rolled dual-phase Nb-bearing steel were studied at laboratory. It is found that the dual-phase steel displays clearly classic dual phase morphology which is ferrite and martensite or bainsite, and the fine island or lath martinsite is dispersed on the matrix of ferrite by the observation of microstructure. The grain can be refined, and the increased precipitated second particles are fined and dispersed with the increasing of reduction. The mechanical properties determination result shows that the mechanical properties have greatly improved by large reduction. The tensile strength obtained in the laboratory is up to 680MPa, the ratio of yield strength and tensile strength is low, and the elongation is better.


2012 ◽  
Vol 251 ◽  
pp. 351-354
Author(s):  
Hui Wang ◽  
Cheng Jiang Lin ◽  
Zhao Jun Deng ◽  
Ji Bin Liu

The difference in microstructures and properties of 600MPa cold rolled dual phase steel with the different composition had been studied in this paper. It can be noticed that the Si-Mn-Cr steel have finer ferrite and more martensite whose content is about 25%; the Mn-Cr-Mo steel have coarser ferrite and some coarse pearlite as well as little martensite; the microstructures of the Mn-Al-Mo steel are consist of mainly ferrite which have even grain size and 16% martensite which distributed homogenously along the ferrite grain boundaries. The difference in microstructure makes the steel own the different properties. The Si-Mn-Cr steel has the highest tensile strength and yield strength but the worst elongation, the Mn-Cr-Mo steel has the lowest tensile strength, the Mn-Al-Mo steel has the an excellent mechanical properties with low yield strength and high tensile strength as well as higher elongation.


2014 ◽  
Vol 1052 ◽  
pp. 51-54 ◽  
Author(s):  
Hui Wang ◽  
Kuan Hui Hu ◽  
Cheng Jiang Lin ◽  
Li Bo Pan ◽  
Zhong Chao Ye

In this Paper an original 800MPa cold rolled dual phase steel with low carbon and high silicon as well as some amount of Mn had been investigated in lab. The study shows that the microstructures of the steel mainly consist of ferrite, along with martensite with the content of 20%~25% which distributes homogenously on the ferrite grain boundary. The grain size of the ferrite is homogenous and with the grade of 13-14. The characteristics of the microstructure results in the excellent mechanical properties of the steel with Rp0.2=485~515MPa,tensile strength Rm=795~805MPa,total elongation A80mm=18%~19.5%,and n=0.135-0.145.


Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


1999 ◽  
Vol 601 ◽  
Author(s):  
B.-N. Kim ◽  
K. Hiraga

AbstractSuperplastic tensile deformation is simulated in 2 dimensions by incorporating grain boundary diffusion and concurrent grain growth derived from static and dynamic growth mechanisms. The following relationship is found between microstructural changes and deformation behavior for constant stress conditions. Grain boundary diffusion produces an increase in the aspect ratio of the matrix grains during deformation and the increased aspect ratio causes a change in creep rate parameters: the stress exponent is decreased from the initial value of 1.0 for equiaxed grains and the grain size exponent is increased from the initial value of 3.0. Accelerated grain growth is also found by the present simulation.


2018 ◽  
Vol 941 ◽  
pp. 224-229
Author(s):  
Takahiro Izumi ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Hiroaki Miyanaga

Microstructures and mechanical properties of lap fillet welded joints of several high and ultra-high tensile strength steel by arc welding were investigated. Steel plates having tensile strength of 400 (SPH400W), 590 (SPC590Y, SPC590R), 980 (SPC980Y) and 1500 MPa (SAC1500HP) class with 2 mm thickness were prepared. Four types of joints were formed by MAG welding; SPH400W/SPH400W, SPC590Y/SPC590Y, SPC980Y/SPC980Y and SAC1500HP/SPC590R. In joints with SPC590Y, SPC980Y and SAC1500HP steel which matrixes are martensitic microstructures, the HAZ softens due to transformation of martensite into ferrite with precipitating cementite. By using high and ultra-high tensile strength steel, the weld metal is strengthened due to dilution of the matrix into the weld metal and thus tensile shear strength of the welded joint increases. In the fatigue test, similar S-N diagrams were obtained in the all welded joints investigated. It seems that the effect of stress concentration due to the shape of the welded joint on fatigue properties is larger than that of the strength of the matrix.


2018 ◽  
Vol 115 (5) ◽  
pp. 507
Author(s):  
Onur Çavusoglu ◽  
Hakan Gürün ◽  
Serkan Toros ◽  
Ahmet Güral

In this study, strain hardening and strain rate sensitivity behavior of commercial DP1000 dual phase steel have been examined in detail at temperatures of 25 °C, 100 °C, 200 °C and 300 °C, at strain rates of 0.0016 s−1 and 0.16 s−1. As the strain rate has increased, the yield strength has increased but no significant change in tensile strength and strain hardening coefficient has been observed. As the temperature has increased, the yield and tensile strength has decreased in between 25 and 200 °C but it has showed an increase at 300 °C. The strain hardening coefficient has increased in parallel with temperature increase. It has been seen that the strain rate sensitivity has not been affected by temperature. No significant difference in the hardening rate has appeared in between 25 and 200 °C, but the highest value has been calculated at 300 °C. It has been determined that the fracture behavior has occurred earlier and load carrying capacity on necking has reduced with the increase of strain rate and not significantly affected by temperature.


Sign in / Sign up

Export Citation Format

Share Document