The effect of ageing duration on the mechanical properties of Al alloy 6061-garnet composites

Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.

2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Fan Wu ◽  
Qingliang Yu ◽  
Changwu Liu ◽  
H. J. H. Brouwers ◽  
Linfeng Wang ◽  
...  

AbstractThe heat-treated apricot shell can be utilized as coarse aggregates for producing sustainable bio-based lightweight concrete with good compressive strength but poor tensile strength. In order to improve the tensile properties of apricot shell concrete (ASC), the effects of polypropylene (PP) fibre, glass (G) fibre and basalt (B) fibre at various volume fractions (Vf) (0.25%, 0.5% and 0.75%) on the performance of ASC were investigated. The results indicated that the fibre type had no significant effect on the physical properties of ASC such as slump, density, water absorption and permeable porosity. However, the slump of ASC decreases with an increase in fibre content. The B fibre has a better improvement in mechanical properties than the PP fibre and G fibre thanks to the better elastic modulus and tensile strength. When the Vf was 0.5%, the compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ASC reinforced with B fibre were increased by 16.7%, 29.1%, 29.2%, and 18.1%, respectively, compared to ASC without any fibres. The magnesium sulfate attack results showed that the incorporation of the B fibre decreased the mass loss and compressive strength of ASC exposed to a MgSO4 solution for 6 months because the fibre arrested the microcracks caused by the expansive stress. It is concluded that the mechanical properties of bio-based ASC and its resistance to magnesium sulfate attack can be significantly improved by incorporating 0.5% B fibre.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Chaoyang Chaoyang ◽  
Guangjie Guangjie ◽  
Lingfei Lingfei ◽  
Fei Fei ◽  
Lin Lin

The microstructure evolution of AA2060 Al alloy containing Li during two-stage homogenization treatment was investigated by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), differential scanning calorimeter (DSC), transmission electron microscopy (TEM), mechanical properties and Vickers micro-hardness test methods. The results demonstrate that severe precipitation of θ(Al2Cu) and S(Al2CuMg) phase existed in the as-cast alloy, especially in the center position. Cu elements were concentrated at grain boundary and gradually decreased from the boundary to the interior. Numerous eutectic phases of θ(Al2Cu) and S (Al2CuMg) containing Zn and Ag elements were segregated at grain boundaries. The overheating temperature of the as-cast alloy is 497 °C. After two-stage homogenization treatment, the θ(Al2Cu) and S (Al2CuMg) in the surface, middle and center positions were completely dissolved into the matrix, thus achieved uniform homogenization effect. Moreover, water cooling could prevent the precipitation after homogenization, which provided good performance of the studied alloy. The optimum two-stage homogenization treatment of AA2060 alloy was 460 °C/4 h + 490 °C/2 4 h. The homogenization kinetic analysis was discussed as well.


2014 ◽  
Vol 496-500 ◽  
pp. 336-339
Author(s):  
Nisachon Khunbanterng ◽  
Sirikul Wisutmethangoon ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin

Semi-solid 2024 Al alloys with strontium (Sr) addition of 0.15 wt% and 0.3 wt% were prepared by Gas Induced Semi-Solid (GISS) process. Effect of Sr addition on the microstructure and mechanical properties of the semi-solid 2024 alloy was investigated. It was found that the tensile strength and % elongation of the T6 heat treated alloy with the Sr addition were higher than those without Sr addition owing to the reduction of Mg2Si phase formation. The semi-solid 2024 Al alloy with 0.15%Sr addition obtained the average highest tensile strength of 382 MPa and elongation of 6.45%.


2020 ◽  
Vol 16 (1) ◽  
pp. 119-130
Author(s):  
Hamid Ranjbar ◽  
Ali Jadidi ◽  
Hosein Amerei

AbstractDegradation and disintegration of concrete depend on the formation of cracks and micro cracks intensively. With increase loading, micro cracks are linked together and form cracks. To solve the problem and to provide the homogenous condition, a series of thin fibers having been spread through the volume of concrete are used in the several last decades and they are called as fibers. In the study, the steel fibers integrated in the different percentages of weight have been investigated. The performance of fibers has been studied how to increase compressive strength, tensile strength, and bending strength. To survey compressive strength, tensile strength, and bending strength in the produced concrete, three plans of mixtures including the different percentages of the steel fibers have been examined. The results show that compressive strength in the concrete reinforced with steel fibers relies mainly on the quality of mortar. The added steel fibers cause the inconsiderable changes in the compressive strength of concrete. The results demonstrate that the concrete reinforced with steel fibers increase tensile strength considerably. The more the volume of steel fibers is, the more tensile strength is. Pozzolanic materials used in the specimens reinforced in steel fibers improve tensile strength. To investigate bending strength of the specimens reinforced with steel fibers, the study has used 4-point loading system. Generally, steel fibers used in the concrete increase bending strength of the concrete. The results indicate the increased steel fibers enhance bending strength in three plans of mixtures. Among the specimen reinforced with steel fibres, the most mechanical properties are related to the plans including 1, 1.5, and 2 percentages of dramix hooked steel fibers in the study. To examine crack pattern of the matrix tensile specimen reinforced with the different percentages of fibers, parameters such as the number of cracks, width of cracks, and distance between them are investigated.


Author(s):  
Asgeir Bardal ◽  
Ragnvald Høier

In various metal-based composites ceramical powders are added for increased mechanical properties. Commercial materials are made through different production routes and in all cases the physical properties are determined by the production determined microstructure, i.e. by the grain and particle size, the dislocation density and the local structure near and at the interface between the matrix and the ceramical powder. In the present studies it has been focused on the two latter aspects.The matrix of the material investigated is the commercial Al alloy AA6061, with Mg and Si as the major alloying elements, and the powder added is SiC. The material has been subject to various heat-treatments and is being studied by use of TEM, EELS and EDS. In this work we will focus on material produced via a powder route, and specimens which have been heat treated at 400°C for 8 hours, extruded, slowly cooled (l°C/min) down to 180°C and then quenched to room temperature. This gives a material with good ductility, strength a little lower than the unreinforced alloy and a stiffness which is about 50% higher.


2013 ◽  
Vol 753 ◽  
pp. 501-504 ◽  
Author(s):  
Hiroaki Kusuhara ◽  
Munetoshi Noguchi ◽  
Masafumi Noda ◽  
Hisashi Mori ◽  
Kunio Funami

The good formability and corrosion resistance of 6N01 Al alloy allow it to be utilized in high-speed train systems, and weight reduction of railway vehicles is possible by improving the strength of this alloy. This study examined the effect of the fine-grained structure on the mechanical properties of the alloy formed by a combination of heat treatment and severe plastic deformation such as forging and rolling. The role of the fine-grained structure in determining the plastic formability was also investigated. The 0.2% proof stress and tensile strength of the heat-treated and multi-axial alternative forging (MAF) processed materials were both greater than 300 MPa. Subsequent cold rolling of these alloys increased both the 0.2% proof stress and tensile strength to over 450 MPa with a grain size of less than 1 μm. The fine-grained structure was confirmed to be effective in improving the strength of the 6N01 Al alloy.


2014 ◽  
Vol 893 ◽  
pp. 353-356
Author(s):  
Atchara Sangchan ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin ◽  
Sirikul Wisutmethangoon

Effect of strontium (Sr) addition on the microstructure and the mechanical properties of semi-solid A356 aluminum alloy produced by GISS process were investigated in this study. Strontium addition resulted in both grain refinement and modification of eutectic Si. The maximum average ultimate tensile strength and elongation of 291.06 MPa and 17.31%, respectively, were obtained from the T6 heat-treated specimen containing 0.08wt%Sr. The excessive addition of strontium (0.2wt%Sr), however, seemed to deteriorate the mechanical properties of the alloy as a result of the Al2Si2Sr particle formation.


2014 ◽  
Vol 794-796 ◽  
pp. 857-863
Author(s):  
Daisuke Terada ◽  
Yan Zeng ◽  
Nobuhiro Tsuji

In order to improve limited ductility of ultrafine grained (UFG) Al alloys, mechanical properties of an UFG Al alloy having fine precipitates within grains were investigated. An Al-0.2wt%Sc-4.2wt%Ag alloy was severely deformed by the ARB process at room temperature and subsequently heat-treated by a two-step aging. After the first aging in the two-step aging, fine Al3Sc precipitates were formed. In the specimen ARB processed by 4cycles, the fine Al3Sc precipitates were homogeneously dispersed within the grains. On the other hand, in the specimen ARB processed by 8 cycles, Al3Sc precipitates were linearly-aligned on the grain boundaries that had moved during the heat treatment. After the second aging, fine G.P. zones of Ag as well as Ag2Al precipitates were observed within the grains in the specimen ARB processed by 4 cycles. Coarse precipitates of Ag2Al at grain boundaries were observed in the specimen ARB processed by 8 cycles. The difference in the distribution of precipitates was considered to be due to the difference in fraction of high angle grain boundaries in the matrix microstructures. The strength of the solution treated specimen increased by the two-step aging while the tensile elongation decreased. On the other hand, both of the strength and elongation of the specimen ARB processed by 4 cycles increased after the two-step aging. In case of the specimen ARB processed by 8 cycles, the strength decreased slightly and the elongation increased by the two-step aging, and the aged specimen exhibited a good balance between strength and elongation.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document