Performance Research on Photovoltaic/Thermovoltaic Solar System in Building Integrated Photovoltaic (BIPV)

2013 ◽  
Vol 544 ◽  
pp. 401-404 ◽  
Author(s):  
Chen Guang Wei ◽  
Yi Wang Bao

A novel hybrid photovoltaic/thermovoltaic solar system (PV/TV) was designed with PV cells combined with heat collector and thermoelectric generator. This PV/TV model can collect heat from the solar panels to reduce its surface temperature, and then to generate electricity by using of temperature difference technology and devices. In this paper, electricity generation performance of PV/TV system between April to October was tested and discussed. The application of this system in photovoltaic building was discussed. The results indicate that overall efficiency of this PV/TV system is higher than that of a pure PV system, and about 5%-15% efficiency increase.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3368-3373

The limited fossil fuels and demand for the energy made renewable a booming source of generating energy. An enormous amount of solar energy made it a best alternative renewable energy, which is free of cost and unlimited source of energy, eco-friendly and sustainable to the environment. But during the execution of panels on land has the burden of intense land requirements which is a premium commodity. The hurdles faced are land availability, land acquisition, land development and, land evacuation. Earth is covered with 70% of water. So, most of the solar energy is captured by water compared to land. To conserve the valuable land and water, installing a solar PV system on water bodies like oceans, lakes, lagoons, reservoirs, canals and water storage tanks are an appropriate option. They have numerous advantages compared to land installed solar panels. They reduce the valuable land area, reduce evaporation of drinking water, cooling of solar panels by the water below the panels. Additionally, the aquatic environmental profits by the solar installation limit the algae growth and potentially improves water quality. In this paper a new method of the float was discussed, a comparison is made between the floating PV system and standalone PV system. This method also improves the efficiency of the solar panel. A Small prototype has been designed and the results were plotted for different loads.


2011 ◽  
Vol 250-253 ◽  
pp. 2153-2156 ◽  
Author(s):  
Chen Guang Wei ◽  
Zheng Quan Liu ◽  
Xiao Ying Deng

In recent years, Building Integrated Photovoltaic (BIPV) system has been becoming one of most important application of solar energy. Heat is the key of the BIPV design. If the temperature of photovoltaic modules is too high, it will affect the efficiency of solar cells, the structure performance of the components and service life. This paper present a photoelectric-thermoelectric (PV-TV) model which can collect heat from the solar panels so that to reduce its surface temperature, and then to generate electricity by using of temperature difference technology and devices. The model presented in this paper provides designers a new concept in BIPV design.


Author(s):  
Richard Eberechi Echendu ◽  
Hachimenum Nyebuchi Amadi

This work focuses on the performance evaluation of a Standalone Solar Photovoltaic (PV) system for electricity generation in an estate requiring a daily power consumption of 50KW. This was achieved through a solar tracker software/hardware – embedded programme control system. A programmable microcontroller (PIC16F877A), light detection sensors (CDS NORP 12), motor driver IC (L293D), power relays (NTE-R22-5) and a dc gear motor with linear actuator (HARL-3618) were used. MikroC Pro compiler from Mikro Electroniker was used to programme the PIC16F877A. A fixed PV panel of same size was placed side by side and tested with the solar tracking system. The test results obtained showed that the solar tracking system produced 14.3W at 8:00am, increases to a maximum of 25.83W at 1:00pm and decreased to 16.28W at 6:00pm while the fixed PV panel produced 5W at 8:00am, increased to a maximum of 25.62W at 1:00pm and decreased to 10.6W at 6:00pm. These results gave the solar tracking system an efficiency increase of 33 percent over the fixed system. The designed system installed in residential homes has capacity to guarantee sustainable, durable and improved power supply.


Author(s):  
VS Chandrika ◽  
M Mohamed Thalib ◽  
Alagar Karthick ◽  
Ravishankar Sathyamurthy ◽  
A Muthu Manokar ◽  
...  

Photovoltaic (PV) system efficiency depends on the geographical location and the orientation of the building. Until installing the building structures, the integration of the PV module must be evaluated with ventilation and without ventilation effects. This work optimises the performance of the 250 kWp grid-connected photovoltaic (GPV) for community buildings in the southern part of India. This simulation is carried out to evaluate the system efficiency of the GPV system under various ventilation conditions, such as free-standing PV (FSPV), building integrated photovoltaic ventilated (BIPV_V) and Building Integrated Photovoltaic without ventilation (BIPV). The PVsyst simulation tool is used to simulate and optimise the performance of the system with FSPV, BIPV and BIPV_V for the region of Chennai (13.2789° N, 80.2623° E), Tamilnadu, India. An annual system energy production is 446 MWh, 409 MWh and 428 MWh of FSPV, BIPV and BIPV_V system respectively. while electrical efficiency for the FSPV, BIPV_V, BIPV system is 15.45%. 15.25% and 14.75% respectively. Practical application: Integrating the grid connected photovoltaic system on the building reduces the energy consumption in the building. The integration of the PV on the roof or semi integrated on the roof is need to be investigated before installing on the buildings. The need for installation of the BIPV with ventilation is explored. This study will assist architects and wider community to design buildings roofs with GPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones.


Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


Author(s):  
Michael H. Fox

Renewable energy from the sun—which includes solar, wind, and water energy— can meet all of our energy needs and will allow us to eliminate our dependence on fossil fuels for electricity production. At least, that is the “Siren song” that seduces many people. Amory Lovins, the head of the Rocky Mountain Institute, has been one of the strongest proponents of getting all of our energy from renewable sources (what he calls “soft energy paths”) (1) and one of the most vociferous opponents of nuclear power. A recent article in Scientific American proposes that the entire world’s needs for power can be supplied by wind, solar, and water (2). Is this truly the nirvana of unlimited and pollution-free energy? Can we have our cake and eat it, too? Let’s take a critical look at the issues surrounding solar and wind power. Let me be clear that I am a proponent of solar energy. I built a mountain cabin a few years ago that is entirely off the grid. All of the electricity comes from solar photovoltaic (PV) panels with battery storage. The 24 volt DC is converted to AC with an inverter and is fed into a conventional electrical panel. It provides enough energy to power the lights, run a 240 volt, three-quarter horsepower water pump 320 feet deep in the well, and electrical appliances such as a coffee pot, toaster, and vacuum cleaner. But I am not implying that all of my energy needs come from solar. The big energy hogs—kitchen range, hot water heater, and a stove in the bedroom—are all powered with propane. Solar is not adequate to power these appliances. In 2010 I also had a 2.5 kW solar PV system installed on my house that ties into the utility grid. When the sun is shining, I use the electricity from the solar panels, and if I use less than I generate, it goes out on the grid to other users. If it does not produce enough for my needs, then I buy electricity from the grid.


2018 ◽  
Vol 193 ◽  
pp. 03003 ◽  
Author(s):  
Natalya Trukhina ◽  
Ella Okolelova

The article considers problems and prospects of development of energy saving technologies in construction. The possible directions of improving the construction of residential facilities with the aim of increasing their efficiency are considered, taking into account different technologies. The main emphasis is on the use of solar panels as one of the most effective ways of saving resources. The maximum level of heliotropia for the Central black earth region is determined. To increase the efficiency of the solar battery it is proposed to develop a rotary device that allows you to change the angle of the battery in the vertical and horizontal planes. The dynamics of rotation in the horizontal plane should depend on the time of day, in the horizontal – season. The article presents the problem of determining the speed of rotation of the solar battery in the direction of the solar azimuth and relative to the horizon during the day, allowing you to use a slewing device with maximum efficiency. Increase efficiency when using the rotary mechanism will reduce the number of solar batteries with the same capacity of electricity consumption. Also the problem of determining the optimal number of solar panels.


2020 ◽  
Vol 13 (3) ◽  
pp. 267-285
Author(s):  
Laura Casula ◽  
Guglielmo D’Amico ◽  
Giovanni Masala ◽  
Filippo Petroni

AbstractThis article deals with the production of energy through photovoltaic (PV) panels. The efficiency and quantity of energy produced by a PV panel depend on both deterministic factors, mainly related to the technical characteristics of the panels, and stochastic factors, essentially the amount of incident solar radiation and some climatic variables that modify the efficiency of solar panels such as temperature and wind speed. The main objective of this work is to estimate the energy production of a PV system with fixed technical characteristics through the modeling of the stochastic factors listed above. Besides, we estimate the economic profitability of the plant, net of taxation or subsidiary payment policies, considered taking into account the hourly spot price curve of electricity and its correlation with solar radiation, via vector autoregressive models. Our investigation ends with a Monte Carlo simulation of the models introduced. We also propose the pricing of some quanto options that allow hedging both the price risk and the volumetric risk.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3777
Author(s):  
Chul-sung Lee ◽  
Hyo-mun Lee ◽  
Min-joo Choi ◽  
Jong-ho Yoon

The performance of the Operable Building Integrated Photovoltaic (OBIPV) system applied to the building envelope to reduce the building energy consumption varies significantly depending on the operation method and influence of the surrounding environment. Therefore, optimization through performance monitoring is necessary to maximize power generation of the system. This study used temperature-corrected normalized efficiency (NE*) to evaluate the power generation performance of the operation methods and predict that of the OBIPV system based upon the measured data. It was confirmed that power generation performance decreased when the photovoltaic (PV) operation angle changed, the system remaining the same. A decrease in power generation performance due to partial shading from an overhang was also observed. As a result of the power generation prediction for two months using NE*, the error of the measured values was found to be less than 3%. In addition, with or without any partial shading of the OBIPV system, its performance degradation was predicted with an annual electricity generation decrease by 36 kWh/yr (6.5%). Therefore, NE* can be used as an indicator for evaluating the power generation performance of PV systems, and to predict generation performance considering partial shading.


Author(s):  
Ján Jobbágy ◽  
Koloman Krištof ◽  
Pavol Findura ◽  
Oľga Urbanovičová ◽  
Milan Križan

The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic), on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L). The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014) operation process of boiler Tatramat VTS 200L (trivalent) with 200 litres of volume (as a part of Thermosolar solar system). The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy). Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.


Sign in / Sign up

Export Citation Format

Share Document