Interfacial Effect on Bending Property of Al/Cu/Al Laminated Composite Produced by Asymmetrical Roll Bonding

2013 ◽  
Vol 575-576 ◽  
pp. 194-197
Author(s):  
Xiao Bing Li ◽  
Guo Yin Zu ◽  
Ping Wang

This paper is aim to investigate the interfacial effect on the bending property of Al/Cu/Al laminated composite produced by the asymmetrical roll bonding and annealing. The interfacial microstructure was observed by scanning electron microscope, and the three-point bending tests were conducted at room temperature. It is found that the interfacial layer near the faster roll is about 1 μm thickness and continuous, and the bending strength is increased by 4.4% in comparison with the interface near the slower roll. The results demonstrate that the shear deformation during asymmetrical roll bonding causes a severe interfacial fracture and makes a good interfacial bonding. The increase of bending load is ascribed to the interfacial improvement.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meng Zou ◽  
Jiafeng Song ◽  
Shucai Xu ◽  
Shengfu Liu ◽  
Zhiyong Chang

This study conducted quasistatic three-point bending tests to investigate the effect of bamboo node on the energy absorption, bending, and deformation characteristics of bamboo. Results showed that the node had a reinforcing effect on the energy absorption and bending strength of the bamboo culm subjected to bending load. The experimental results demonstrated that nodal samples (NS) significantly outperform internodal samples without node (INS). Under the three-point bending load, the main failure mode of bamboo is the fracture failure. The node also showed split and fracture prevention function obviously. Based on that, a series of bionic bumper beams were designed inspired by the bamboo node. The FEM results indicated that the performance of bionic bumpers was better than that of a normal bumper with regard to bending strength, energy absorption, and being lightweight. In particular, the bionic bumper beam has the best performance with regard to bending, energy absorption, and being lightweight compared with the normal bumper under pole impact. The characteristic of the bionic bumper beam is higher than that of the normal bumper beam by 12.3% for bending strength, 36.9% for EA, and 31.4% for SEA; moreover, there was a mass reduction of 4.9%, which still needs further optimization.


2013 ◽  
Vol 833 ◽  
pp. 266-270
Author(s):  
Chuan Sun ◽  
Yun Kai Li ◽  
Hu Wang ◽  
Ming Ming Wan ◽  
Yun Fei Wang ◽  
...  

Ceramics are widely used in every field of contemporary industrial because of its many excellent properties. However, its mechanical property is great brittleness and small toughness for the characteristics of internal chemical bond, which restricts its application range to a large extent. Therefore, how to improve mechanical properties of ceramic materials has been attracted a great attention in the relevant area. For ceramics using at room temperature, a method which can avoid brittle failure by metal confinement outside of ceramics is given. And the feasibility of this method is discussed. Three point bending tests were conduct on ZrO2 ceramics with and without lateral confinement separately. Base on the much of experimental conclusion, the bending strength of ceramic with lateral confinement was improved largely.


2018 ◽  
Vol 922 ◽  
pp. 104-109
Author(s):  
Hai Vu Pham ◽  
Makoto Nanko ◽  
Wataru Nakao

Oxidation resistance and bending strength at high temperatures of 5 vol% Ni/(10 vol% ZrO2+Al2O3) were investigated in this paper. Oxidation tests were conducted at temperature ranging from 1100 to 1300oC for 1 to 24 h in air. The oxidation resistance of the composites was studied via observation of oxidized-zone development from a cross-section view after oxidation. Three-point bending tests were conducted at temperatures ranging from room temperature to 1200oC in order to estimate its performance at high temperatures. Bending strength of the composites achieved 1200 MPa at room temperature and 460 MPa at 1200oC. Dispersion of ZrO2in Ni/Al2O3composites enhanced both their room and high temperature bending strength. Nevertheless, ZrO2slightly degraded the oxidation resistance of the composites. The oxidation rate of Ni/(ZrO2+Al2O3) was one order of magnitude higher than that of Ni/Al2O3.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1927
Author(s):  
Marco P. Silva ◽  
Paulo Santos ◽  
João M. Parente ◽  
Sara Valvez ◽  
Paulo N. B. Reis ◽  
...  

This work intends to study the effect of the curing parameters on the mechanical properties of a polyester resin without a complete curing reaction process. For this purpose, cures at room temperature, 40 °C, and 60 °C, and post-cures at 40 °C and 60 °C, with different exposure times, were considered. Three-point bending tests were performed to assess the bending properties and both stress relaxation and creep behavior. The degree of crosslinking was estimated by evaluating the C = C ester bond, by Fourier infrared spectroscopy and complemented with the thermal characterization made by differential scanning calorimetry. The results showed that higher curing temperatures are preferable to methods involving curing and post-curing, which can be confirmed by the higher degree of conversion of unsaturated ester bonds at 60 °C. Compared to the resin cured at room temperature, the bending strength increased by 36.5% at 40 °C and 88.6% at 60 °C. A similar effect was observed for bending stiffness. In terms of stress relaxation and creep strain, the lowest values were obtained for samples cured at 60 °C.


2021 ◽  
pp. 002199832110200
Author(s):  
H Ersen Balcıoğlu ◽  
Raif Sakin ◽  
Halit Gün

Fiber-reinforced laminated composite is often used in harsh environments that may affect their static stability and long-term durability as well as residual strength. In this study, the effect of heavy chemical environments such as acid and alkaline and retaining time for these environments on flexural strength and flexural fatigue behavior of carbon/epoxy laminated composites were investigated. In this context, carbon/epoxy was retained into an acidic and alkaline solution having 5%, 15%, and 25% concentration by weight for 1–4 months. Fatigue behavior of carbon/epoxy was determined under dynamic flexural load, which corresponds to 80%, 70%, 60%, 50%, and 40% of static three-point bending strength of the test sample. SEM image of damaged specimens was taken to describe the failure mechanism of damage which occurs after fatigue. Also, to better understand environmental condition on the fatigue life, results were compared with results of carbon/epoxy laminated composites, which were not retained into any environments (unretained). The test results showed that the solution type, solution concentration, and retaining time caused noticeable changes in the static and dynamic strengths of carbon/epoxy laminated composites.


2007 ◽  
Vol 353-358 ◽  
pp. 345-348
Author(s):  
Ki Woo Nam ◽  
B.G. Ahn ◽  
M.K. Kim ◽  
C.S. Son ◽  
Jin Wook Kim ◽  
...  

The optimized conditions of pressureless sintering were investigated in order to obtain the bending strength and the elastic wave signal of Al2O3 composite ceramics for textiles machinery. As sintering conditions, a temperature range from 1400°C to 1700°C and time from 30 minutes to 150 minutes were applied. Three-point bending tests were conducted on the sintered materials to obtain the strength property. From the test results, the optimum sintering condition was 1600°C, 100 minutes. Al2O3 composite ceramics showed that the elastic wave signal characteristics had a regular correlativity between the optimum sintering temperature and time as well as the maximum bending strength.


2004 ◽  
Vol 261-263 ◽  
pp. 1635-1640 ◽  
Author(s):  
Seok Hwan Ahn ◽  
Ki Woo Nam ◽  
Kotoji Ando

Four kinds of brittle materials were used to evaluate the bending strength under three-point bending and the characteristics of the elastic wave signal by Vickers indentation. The bending test was carried out under room temperature and high temperature. A crack was made at the tension side of the specimen with a Vickers indenter to investigate fracture strength. Fracture wave detector was used to evaluate characteristics of waveform and frequency of the elastic wave signal.


2012 ◽  
Vol 499 ◽  
pp. 229-234 ◽  
Author(s):  
Q. Pan ◽  
Wen Feng Ding ◽  
Jiu Hua Xu ◽  
B. Zhang ◽  
H.H. Su ◽  
...  

Alumina (Al2O3) bubble particles were added into the mixture of CBN abrasive grains, Cu-Sn-Ti alloy and graphite particles to prepare the composite blocks for porous CBN abrasive wheels. The specimens were sintered at the temperature of 920°C for the dwell time of 30 min. The bending strength of the composite blocks was measured by the three-point bending tests. The fracture surface of the blocks was characterized. The results show that, the content of alumina bubble particles does not take significant effect on the mechanical strength of the composite blocks. Even the lowest strength of the composite blocks, 98 MPa, is higher than that of the vitrified CBN abra-sive wheels. Cu-Sn-Ti alloy has bonded firmly alumina particles and CBN grains by means of the chemical reaction and corresponding products. Finally, the chip space was formed through the re-moval of the ceramic wall of the alumina bubble particles within the CBN abrasive wheel during dressing.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3158 ◽  
Author(s):  
Santiago Cano ◽  
Tanja Lube ◽  
Philipp Huber ◽  
Alberto Gallego ◽  
Juan Alfonso Naranjo ◽  
...  

The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.


2012 ◽  
Vol 450-451 ◽  
pp. 482-485 ◽  
Author(s):  
A Ying Zhang ◽  
Di Hong Li ◽  
Dong Xing Zhang

The effects of moisture content on the bending strength of T300/914 composite laminates that immersed in water for 7 days and 14 days was discussed in this paper. The three-point bending tests were conducted on the composite laminates. Experimental results reveal that the moisture content in the laminates increased with immersion time and that moisture absorption accelerated damage propagation in the composite laminates. The bending strength of the unaged, aged specimens were characterized and analyzed. Compared to the unaged specimens, the bending strength of the composite laminates immersed for 7 and 14 days decreased by 6.62% and 16.98%, respectively. The results revealed that the bending strength of the aged specimens decreased with the increasing immersion time.


Sign in / Sign up

Export Citation Format

Share Document