scholarly journals Bionic Design of the Bumper Beam Inspired by the Bending and Energy Absorption Characteristics of Bamboo

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meng Zou ◽  
Jiafeng Song ◽  
Shucai Xu ◽  
Shengfu Liu ◽  
Zhiyong Chang

This study conducted quasistatic three-point bending tests to investigate the effect of bamboo node on the energy absorption, bending, and deformation characteristics of bamboo. Results showed that the node had a reinforcing effect on the energy absorption and bending strength of the bamboo culm subjected to bending load. The experimental results demonstrated that nodal samples (NS) significantly outperform internodal samples without node (INS). Under the three-point bending load, the main failure mode of bamboo is the fracture failure. The node also showed split and fracture prevention function obviously. Based on that, a series of bionic bumper beams were designed inspired by the bamboo node. The FEM results indicated that the performance of bionic bumpers was better than that of a normal bumper with regard to bending strength, energy absorption, and being lightweight. In particular, the bionic bumper beam has the best performance with regard to bending, energy absorption, and being lightweight compared with the normal bumper under pole impact. The characteristic of the bionic bumper beam is higher than that of the normal bumper beam by 12.3% for bending strength, 36.9% for EA, and 31.4% for SEA; moreover, there was a mass reduction of 4.9%, which still needs further optimization.

2013 ◽  
Vol 575-576 ◽  
pp. 194-197
Author(s):  
Xiao Bing Li ◽  
Guo Yin Zu ◽  
Ping Wang

This paper is aim to investigate the interfacial effect on the bending property of Al/Cu/Al laminated composite produced by the asymmetrical roll bonding and annealing. The interfacial microstructure was observed by scanning electron microscope, and the three-point bending tests were conducted at room temperature. It is found that the interfacial layer near the faster roll is about 1 μm thickness and continuous, and the bending strength is increased by 4.4% in comparison with the interface near the slower roll. The results demonstrate that the shear deformation during asymmetrical roll bonding causes a severe interfacial fracture and makes a good interfacial bonding. The increase of bending load is ascribed to the interfacial improvement.


2007 ◽  
Vol 353-358 ◽  
pp. 345-348
Author(s):  
Ki Woo Nam ◽  
B.G. Ahn ◽  
M.K. Kim ◽  
C.S. Son ◽  
Jin Wook Kim ◽  
...  

The optimized conditions of pressureless sintering were investigated in order to obtain the bending strength and the elastic wave signal of Al2O3 composite ceramics for textiles machinery. As sintering conditions, a temperature range from 1400°C to 1700°C and time from 30 minutes to 150 minutes were applied. Three-point bending tests were conducted on the sintered materials to obtain the strength property. From the test results, the optimum sintering condition was 1600°C, 100 minutes. Al2O3 composite ceramics showed that the elastic wave signal characteristics had a regular correlativity between the optimum sintering temperature and time as well as the maximum bending strength.


2012 ◽  
Vol 499 ◽  
pp. 229-234 ◽  
Author(s):  
Q. Pan ◽  
Wen Feng Ding ◽  
Jiu Hua Xu ◽  
B. Zhang ◽  
H.H. Su ◽  
...  

Alumina (Al2O3) bubble particles were added into the mixture of CBN abrasive grains, Cu-Sn-Ti alloy and graphite particles to prepare the composite blocks for porous CBN abrasive wheels. The specimens were sintered at the temperature of 920°C for the dwell time of 30 min. The bending strength of the composite blocks was measured by the three-point bending tests. The fracture surface of the blocks was characterized. The results show that, the content of alumina bubble particles does not take significant effect on the mechanical strength of the composite blocks. Even the lowest strength of the composite blocks, 98 MPa, is higher than that of the vitrified CBN abra-sive wheels. Cu-Sn-Ti alloy has bonded firmly alumina particles and CBN grains by means of the chemical reaction and corresponding products. Finally, the chip space was formed through the re-moval of the ceramic wall of the alumina bubble particles within the CBN abrasive wheel during dressing.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3158 ◽  
Author(s):  
Santiago Cano ◽  
Tanja Lube ◽  
Philipp Huber ◽  
Alberto Gallego ◽  
Juan Alfonso Naranjo ◽  
...  

The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.


2012 ◽  
Vol 450-451 ◽  
pp. 482-485 ◽  
Author(s):  
A Ying Zhang ◽  
Di Hong Li ◽  
Dong Xing Zhang

The effects of moisture content on the bending strength of T300/914 composite laminates that immersed in water for 7 days and 14 days was discussed in this paper. The three-point bending tests were conducted on the composite laminates. Experimental results reveal that the moisture content in the laminates increased with immersion time and that moisture absorption accelerated damage propagation in the composite laminates. The bending strength of the unaged, aged specimens were characterized and analyzed. Compared to the unaged specimens, the bending strength of the composite laminates immersed for 7 and 14 days decreased by 6.62% and 16.98%, respectively. The results revealed that the bending strength of the aged specimens decreased with the increasing immersion time.


2011 ◽  
Vol 332-334 ◽  
pp. 1468-1471 ◽  
Author(s):  
Can Can Cheng ◽  
Zhao Lin Liu ◽  
Li Fang Liu ◽  
Jian Yong Yu

Tapered 3D braided composites are prepared by column yarn-reduction technique, unit yarn-reduction technique and cutting, respectively. Bending properties in the tapered regions of the composites are obtained by three-point bending tests, and SEM photographs of the fracture surfaces are observed to analyze the failure mechanisms. Results show that bending modulus and bending strength of the yarn-reduction composites are significantly higher than those of the cut composites, and the unit yarn-reduction composites are slightly stronger than the column yarn-reduction composites. The saw-tooth propagation of matrix crackings and interfacial debondings are the primary failure mechanisms of the yarn-reduction composites, while yarn breakages and yarn pulling-outs are the main failure modes of the cut composites.


2021 ◽  
Vol 16 (59) ◽  
pp. 153-171
Author(s):  
Nadia Kouider ◽  
Yazid Hadidane ◽  
Mohammed Benzerara

The wide use of cold-formed sections (CFS) in the field of steel constructions, favored by the multiple advantages they offer (lightness, ease of installation, etc.), has led us to reflect on a new process for manufacture of metal beams allowing the design of very large span hangars and a reduction in instability problems. This paper presents a study of the theoretical and numerical behavior of a large span CFS beam with different webs, a solid web, a triangular corrugated web, and a trapezoidal corrugated web. These beams are stressed by a concentrated bending load at mid-span. Numerical modeling was done using the finite element software ABAQUS. The results were validated with those theoretically found, based on the effective width method adopted in standard EN1993-1-3. The load capacity and failure modes of the beams were discussed. According to numerical and analytical analysis, corrugated web beams perform better than all other sections.


Author(s):  
Vahid Asghari ◽  
Abdolvahed Kami ◽  
Abbasali Bagheri

In this research, high-density polyethylene rods were joined together using rotary friction-welding. The effects of nanoparticle reinforcement and weld surface shape on the welded joint strength were investigated. To this aim, high-density polyethylene rods with a length of 50 mm and a diameter of 22 mm were machined, and three weld surface shapes, that is, flat, step, and conic shapes (on male and female counterparts), were created. The high-density polyethylene rods were rotary friction-welded with the addition of ZnO and SiO2 nanoparticles. The bending strength of rotary friction-welded rods was assessed by conduction of three-point bending tests. The results showed that both the weld surface shape and nanoparticles influence the bending strength of the welded joints. It was found that the step sample welds have higher bending strength (average bending depth and force of 6.27 mm and 2027.8 N, respectively). Furthermore, except for the case of flat samples, the addition of the reinforcement nanoparticles resulted in the improvement of the bending strength of the rotary friction-welded rods.


2013 ◽  
Vol 833 ◽  
pp. 266-270
Author(s):  
Chuan Sun ◽  
Yun Kai Li ◽  
Hu Wang ◽  
Ming Ming Wan ◽  
Yun Fei Wang ◽  
...  

Ceramics are widely used in every field of contemporary industrial because of its many excellent properties. However, its mechanical property is great brittleness and small toughness for the characteristics of internal chemical bond, which restricts its application range to a large extent. Therefore, how to improve mechanical properties of ceramic materials has been attracted a great attention in the relevant area. For ceramics using at room temperature, a method which can avoid brittle failure by metal confinement outside of ceramics is given. And the feasibility of this method is discussed. Three point bending tests were conduct on ZrO2 ceramics with and without lateral confinement separately. Base on the much of experimental conclusion, the bending strength of ceramic with lateral confinement was improved largely.


Sign in / Sign up

Export Citation Format

Share Document