A Comparative Study of High Speed Orthogonal Turning of AISI4340 by Three Different Finite Element Models

2013 ◽  
Vol 589-590 ◽  
pp. 111-116
Author(s):  
Tao Wang ◽  
Li Jing Xie ◽  
Xi Bin Wang

The aim of this paper is to compare the predicting ability of the orthogonal cutting models developed by three commonly used finite element softwares, namely commercial explicit dynamic code Abaqus/explicit, Thirdwave AdvantEdge and implicit finite element codes Deform 2D. In all proposed models, the chip formation was simulated through adaptive remeshing and plastic flow of work material around the round edge of the cutting tool. Therefore, there was no need for a chip separation criterion which made the physical process simulation more realistically. Predicted cutting, feed force and shear angle were compared with experimental results. In addition, the effect of friction coefficient on the chip morphology was investigated as well.

2008 ◽  
Vol 392-394 ◽  
pp. 879-883
Author(s):  
Hui Xia Liu ◽  
H. Yan ◽  
Xiao Wang ◽  
Shu Bin Lu ◽  
K. Yang ◽  
...  

Two 3-D finite element models of coated tool and uncoated tool were established using the finite element code DEFORM-2D based on the updated Lagrangian formula. And their machinability on high speed orthogonal machining was simulated and compared. The investigation results indicate that the coated tool has higher surface temperature and lower inside temperature compared with the uncoated tool. Moreover, the cutting forces of the model using coated tool are lower than that using uncoated tool.


2012 ◽  
Vol 499 ◽  
pp. 39-44
Author(s):  
L. Yan ◽  
Feng Jiang ◽  
Y.M. Rong

This paper presented a finite element simulation model for the analysis of AISI D2 orthogonal cutting process using TiAlN coated inserts. Firstly, AISI D2 material constitutive model was built based on power law model, which was used in the FEM codes to describe the effect of strain, strain rate and temperature on the material flow stress. In modeling the chip formation, a damage model was employed to predict the chip separation. Then cutting edge radius and thickness of TiAlN coating of cutting tool were measured by SEM. Friction coefficients of cutting tool against AISI D2 steel were obtained by ball-on-plate friction tests on UMT-2 high speed tribometer. Finally, finite element simulations of AISI D2 orthogonal cutting processes were performed using AdvantedgeTM software. The simulated results of cutting forces and chip morphology showed good agreement with the experimental results, which validated the reliability of the cutting process simulation method.


Author(s):  
Walid Jomaa ◽  
Monzer Daoud ◽  
Victor Songmene ◽  
Philippe Bocher ◽  
Jean-François Châtelain

This study aims to identify the coefficients of Marusich’s constitutive equation (MCE) for the aluminum AA7075-T651. Material constants were identified inversely form orthogonal machining tests and from dynamic tests. The proposed material model was successfully implemented in a finite element model (FEM) to simulate the high speed machining of the aluminum AA7075-T6. Deform 2D® software was used. A reasonable agreement between predictions and experiments was obtained. The comparison was based on cutting forces, chip morphology, and tool/chip contact length.


2019 ◽  
Vol 969 ◽  
pp. 870-875
Author(s):  
K. Uday Venkat Kiran ◽  
Chetan Rodge ◽  
Rameshwar Dhurve ◽  
Romil Jain ◽  
Ravikumar Dumpala

In the present experimental study, the effect of turning tool overhang on the chip morphology and vibrations during orthogonal turning has been investigated. Orthogonal cutting (turning) setup was developed to ensure the cutting process happens in a 2-dimesional plane. Orthogonal cutting was realized by turning a circular tube with geometry of 33.88 mm external diameter and 3.5 mm wall thickness (7075-T6 Alloy). High speed steel (HSS) rod with a square cross-section (1⁄2 x 1⁄2 square inch) was used to fabricate the orthogonal turning tool with a geometry of 15 ̊ back rake angle and 9 ̊ clearance angle. The cutting experiments were conducted for different tool overhang lengths (2cm, 3cm, 4cm, 5cm & 6cm) by keeping constant cutting speed (25 m/min) and feed (0.15mm/rev). The vibrational characteristics were measured using accelerometer and Ni-DAQ card. The morphology and microstructure of the chips collected during cutting were studied under optical microscope using metallographic procedures. It was found that for increasing overhang length of cutting tool the chips serrations was found increasing. The frequency of cutting tool and amplitude of vibration was found increasing with increasing tool overhang length.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2009 ◽  
Vol 407-408 ◽  
pp. 420-423
Author(s):  
He Ping Wang ◽  
Xue Ping Zhang

An explicit dynamic coupled thermal-mechanical Arbitrary Lagrangian Eulerian (ALE) model was established to simulate orthogonal cutting AISI 52100 bearing steel, and its temperature and stress distribution. Based on ABAQUS, The ALE approach effectively simulates plastic flow around round edge of the cutting tool without employing chip separation criteria. The calculation results reveal that cutting speed and cutting depth have great impact on chip morphology, stress and temperature distribution in the finished surface and subsurface, the predicted temperature agrees well with experiment data obtained under the similar cutting conditions as well as the change in chip morphology from continuous to sawtooth as the cutting speed increases.


2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


Author(s):  
Zengqiang Wang ◽  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Kunyang Lin ◽  
...  

Abstract High speed cutting (HSC) technology has the characteristics of high material removal rates and high machining precision. In order to study the relationships between chip morphology and machining surface characteristic in high speed cutting of superalloy Inconel718. High-speed orthogonal cutting experiment are carried out by used a high speed cutting device based on split Hopkinson pressure bar (SHPB). The specimen surfaces and collected chips were then detected with optical microscope, scanning electron microscope and three-dimensional surface profile measuring instrument. The results show that within the experimental parameters (cutting speed from 8–16m/s, depth of cut 0.1–0.5mm), the obtained chips are sawtooth chips and periodic micro-ripple appear on the machined surface. With the cutting speed increases, machining surface roughness is decreases from 1.4 to 0.99μm, and the amplitude of periodic ripples also decreases. With the cutting depth increases, the machining surface roughness increases from 0.96 to 5.12μm and surface topography becomes worse. With the increase of cutting speed and depth of cut, the chips are transform from continues sawtooth to sawtooth fragment. By comparing the frequency of surface ripples and sawtooth chips, it is found that they are highly consistent.


Author(s):  
Gautam Salhotra ◽  
Vivek Bajpai ◽  
Ramesh K. Singh

Engineered features on pyrolytic carbon (PyC) have been demonstrated as an approach to improve the flow hemodynamics of the cardiovascular implants. In addition, it also finds application in thermonuclear components. These micro/meso scale engineered features are required to be machined onto the PyC leaflet. However, being a layered anisotropic material and brittle in nature, its machining characteristics differ from plastically deformable isotropic materials. Consequently, this study is aimed at creating a finite element model to understand the mechanics of material removal in the plane of transverse isotropy (horizontally stacked laminae) of PyC. A layered model approach has been used to capture the interlaminar shearing and brittle fracture during machining. A cohesive element layer has been used between the chip layer and the machined surface layer. The chip layer and workpiece are connected through a cohesive layer. The model predicts cutting forces and the chip length for different cutting conditions. The orthogonal cutting model has been validated against experimental data for different cutting conditions for cutting and thrust forces. Parametric studies have also been performed to understand effect of machining parameters on machining responses. This model also predicts chip lengths which have also been compared with the actual chip morphology obtained from microgrooving experiments. The prediction errors for cutting force and chip length are within 20% and 33%, respectively.


2011 ◽  
Vol 230-232 ◽  
pp. 1221-1225 ◽  
Author(s):  
Xia Yu ◽  
Xu Yao Sun ◽  
Dan Ke Wei

Using the separation line technology, established a FE model of two-dimensional cutting process for AISI4340 steel and discussed some basic theory and pivotal questions associated with the simulation of cutting process including the Johnson-Cook material model, the contact model between tool and chip, criteria of chip separation and so on. In order to study the impact of tool rake angle on the chip morphology and the cutting forces, the high-speed cutting process for AISI 4340 steel was simulated based on ABAQUS software. Also, analyzed the influence of mesh azimuth on the chip morphology and its temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document