A Study of Minimal Quantity Lubrication with MWCNTs in Turning of AISI 304L Steel

2014 ◽  
Vol 625 ◽  
pp. 108-114 ◽  
Author(s):  
Wei Tai Huang ◽  
Hsun Heng Tsai ◽  
Der Ho Wu ◽  
Wei Tai Lee

This paper proposes a new lubricant environment when MWCNTs was used in MQL for AISI 304L in the turning machine. The effects of dry cutting, MQL cutting, and MWCNTs/MQL were compared to the surface roughness of work pieces, cutting temperature and the tool wear. In the past, the studies have shown that the MQL process can prolong tool life and improve surface accuracy in machining. The purpose of using MWCNTs suspensions is to increase the thermal conductivity of cutting fluid and to reduce the temperature during the cutting and decrease the thermal wear of tool simultaneously. The present study investigated the characterization of the MWCNTs was applied into MQL during the turning process of AISI 304L experimentally. The results showed that the MWCNTs will be a very good additive to MQL, not only with the benefits of improving surface roughness but also with ability of prolonging life of tool by reducing the cutting temperature in turning AISI 304L.

2014 ◽  
Vol 695 ◽  
pp. 676-679 ◽  
Author(s):  
Abdullah Yassin ◽  
Chong Yaw Teo

This paper presents an experimental investigation on effects of pressure and nozzle angle of minimal quantity lubrication (MQL) on cutting temperature and flank wear in turning. In manufacturing industries, there are always demands for the optimum cutting conditions for the most economical manufacturing cost. Hence, reduction in tool wear is essential for less expenditure with the knowledge of optimum cutting conditions of MQL. MQL, also known as near dry machining, has been acknowledged as an effective cooling technique in machining by applying vegetable oils in replacing the conventional flooding method due to environmental issues. By varying the operating pressures and nozzle angle with respect to the cutting zone, cutting temperature and flank wear are measured using a calibrated tool work thermocouple and SPG video microscope. Comparison was made between dry cutting, water mist cooling and MQL method with palm oil. Results showed that MQL with palm oil exhibits best cooling efficiency at 5 bar pressure and nozzle angle of 20o with reduction of 35% in tool wear and 23% in cutting temperature at higher cutting speeds.


2014 ◽  
Vol 621 ◽  
pp. 3-8 ◽  
Author(s):  
Ai Dong He ◽  
Bang Yan Ye ◽  
Zi Yuan Wang

Cryogenic MQL is a kind of green machining technology of the combination of cryogenic air and minimal quantity lubrication (MQL). The aim of this research is to determine if the cryogenic MQL technique in turning with Cutting tool with internal cooling structure gives some advantages in terms of tool life, surface roughness and cutting chip breaking. This paper reports the results obtained from turning tests, at one feed rates (0.12mm/r) and one depth of cut (0.4mm) and different cutting speeds (43m/min, 108m/min, 217m/min), and the results obtained show that using cryogenic MQL had some advantages in terms of tool wear, surface roughness and cutting chip breaking compared to using dry cutting and cryogenic air cutting. And the results obtained show that when cryogenic MQL and cryogenic air cutting were applied to high speed cutting, they had more advantages.


Author(s):  
Lingfei Kong ◽  
Han Niu ◽  
Xiaoli Hou ◽  
Qingfeng Wang

Under the concept of safety, improving efficiency, or reducing costs in deep hole drilling, the effect of minimal quantity lubrication (MQL) on the dynamic characteristics of drilling shaft is analyzed. A model is presented to describe the pressure function of MQL cutting fluid during drilling process. This model is based on the compressible Reynolds equation in air/oil feature with nonlinearity, and the differential transformation theory is introduced to solve the time-dependent pressure equation satisfied with MQL cutting fluid. Further, with an emphasis on model development, experiments are performed to validate the correctness and effectiveness of the above methods. A series of experimental investigations are carried out on the whirling characteristics of drilling shaft when the rotational speed and drilling depth are changed. Additionally, the vibration trajectories of drilling shaft and the surface roughness of hole are detected under different experimental conditions such as MQL drilling or traditional drilling. The results show that the whirling trajectory of drilling shaft decreases significantly in MQL deep hole drilling but the surface roughness of machined hole is worse due to surface scratches or scales. Nevertheless, there exists an optimal rotational speed of drilling shaft to improve machining precision of hole surface. These results indicate that the MQL method has shown potential to be even more productive as compared to traditional drilling and that the proposed method in this paper can lay a foundation for investigating the dynamic stability of drilling shaft in MQL drilling.


2015 ◽  
Vol 761 ◽  
pp. 313-317
Author(s):  
Chong Yaw Teo ◽  
Abdullah Yassin

This paper presents an experimental investigation on cutting performance in turning of mild steel with application of minimal quantity lubrication (MQL) by using vegetable oils: canola oil, sunflower oil and palm oil. In order to study the effects of MQL on turning process, cutting temperature and flank wear were measured during the turning operations. Cutting temperature was measured using tool work thermocouple while flank wear was observed through SPG video microscope. The measured cutting temperatures and flank wear were also compared to that of dry cutting and water mist cutting. Results showed that among the vegetable oils, palm oil demonstrated highest cooling efficiency, at which reduction of 50 percent in cutting temperature compared to dry cutting. However, it was found out that MQL with canola oil yields the longest tool life. Reasons for such findings are also discussed in the paper.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


Author(s):  
Khirod Mahapatro ◽  
P Vamsi Krishna

Dual nozzle vortex tube cooling system (VTCS) is developed to improve the machinability of Ti-6Al-4V where cold-compressed CO2 gas is used as a coolant. The cooling effect is produced by the process of energy separation in the vortex tube and the coolant is supplied into the machining zone to remove the generated heat in machining. In this study, the responses such as cutting force (Fz), cutting temperature (Tm), and surface roughness (Ra) are analyzed by considering coolant inlet pressure, cold fraction, and nozzle diameter as input variables. Further optimization is performed for the input variables using the genetic algorithm technique, and the results at optimum conditions are compared with those of dry cutting. From the results, lower cutting force is observed at lower coolant pressure and cold fraction and higher nozzle diameter. The cutting temperature is minimized by increasing coolant pressure and cold fraction and by decreasing nozzle diameter. A better surface finish is observed at high coolant pressure and cold fraction and lower nozzle diameters. It is observed from the response surface method (RSM) that the coolant pressure is most significantly affecting all the responses. At optimum conditions, the cutting temperature and surface roughness are 35.6% and 66.14%, respectively, lower than dry cutting due to the effective cooling and lubricating action of the CO2 gas, whereas cutting force observed under the VTCS is 18.6% higher than that of dry cutting because of the impulse force of the coolant VTCS and thermal softening of the workpiece in dry cutting.


2021 ◽  
Vol 40 (4) ◽  
pp. 648-659
Author(s):  
A.O. Osayi ◽  
S.A. Lawal ◽  
M.B. Ndaliman ◽  
J.B. Agboola

Due to the negative effects associated with the wide use of mineral oil, the desire for eco-friendly cutting fluids as alternative to mineral oil has become a global issue. In this study, rubber seed oil was used to formulate oil-in-water emulsion cutting fluid. Full factorial design was used for the formulation of the oil-in-water emulsion cutting fluid. The optimal process parameters obtained were used for the formulation of the novel cutting fluid and the cutting fluid was characterised. The characteristics of the formulated cutting fluid shows viscosity of 4.25 mm2/s, pH value of 8.3, high stability and corrosion resistant. Box-Behnken design was used for the turning operation and the performance of the rubber seed oil cutting fluid was compared with mineral oil. The input parameters were cutting speed, feed rate and depth of cut, while the responses were surface roughness and cutting temperature. Coated carbide insert was used as cutting tool. The ANOVA results show that the feed rate had the most significant effect on the surface roughness and cutting temperature followed by the cutting speed and depth of cut during the turning process. It was observed that the rubber seed oil based cutting fluid reduced surface roughness and cutting temperature by 9.79% and 1.66% respectively and therefore, it can be concluded that the rubber seed oil based cutting fluid performed better than the mineral oil in turning of mild steel.


2012 ◽  
Vol 538-541 ◽  
pp. 1245-1249 ◽  
Author(s):  
Ze Wu ◽  
Jian Xin Deng ◽  
Jun Zhao

Surface textured tools were fabricated by laser beam machining. Dry cutting of Ti-6Al-4V alloys was carried out with these surface textured tools and conventional tools for comparison. The cutting temperature, tool flank wear and surface roughness of processed workpiece were measured. The experimental formulas of tool life based on DOT method were developed. Results show that the surface textured tool can reduce the surface roughness of workpiece, and the tool life of surface textured tool is improved by 15% or so compared with the conventional one.


2014 ◽  
Vol 893 ◽  
pp. 653-657 ◽  
Author(s):  
Ji Lie Zhou ◽  
Zhong Hao Sun ◽  
Yun Xian Wu ◽  
Yang Yu

MQL system is introduced in this paper to verify the influences on the tool wear and cutting force that brought by MQL (minimal quantity lubrication) for high-temperature alloy. The system utilized various pressures that are caused by the compressed air flowing through the decrescent areas to absorb the liquid from the reservoir tank, and then the liquid was transported to the nozzle which could spray the liquid on the workpiece for cooling and lubrication. The results shown that MQL had an obvious advantage over dry cutting and traditional cooling methods; it could effectively reduce cutting forces and improve the tool life expectancy as well as processing quality and efficiency. The proposed method also had some other positive characteristics, such as the less dosage of cooling fluid and the environmental-friendly. It also can be applied to the processing of difficult-to-cut materials with a wide range of prospects.


Sign in / Sign up

Export Citation Format

Share Document