scholarly journals Performance evaluation of rubber seed oil based cutting fluid in turning mild steel

2021 ◽  
Vol 40 (4) ◽  
pp. 648-659
Author(s):  
A.O. Osayi ◽  
S.A. Lawal ◽  
M.B. Ndaliman ◽  
J.B. Agboola

Due to the negative effects associated with the wide use of mineral oil, the desire for eco-friendly cutting fluids as alternative to mineral oil has become a global issue. In this study, rubber seed oil was used to formulate oil-in-water emulsion cutting fluid. Full factorial design was used for the formulation of the oil-in-water emulsion cutting fluid. The optimal process parameters obtained were used for the formulation of the novel cutting fluid and the cutting fluid was characterised. The characteristics of the formulated cutting fluid shows viscosity of 4.25 mm2/s, pH value of 8.3, high stability and corrosion resistant. Box-Behnken design was used for the turning operation and the performance of the rubber seed oil cutting fluid was compared with mineral oil. The input parameters were cutting speed, feed rate and depth of cut, while the responses were surface roughness and cutting temperature. Coated carbide insert was used as cutting tool. The ANOVA results show that the feed rate had the most significant effect on the surface roughness and cutting temperature followed by the cutting speed and depth of cut during the turning process. It was observed that the rubber seed oil based cutting fluid reduced surface roughness and cutting temperature by 9.79% and 1.66% respectively and therefore, it can be concluded that the rubber seed oil based cutting fluid performed better than the mineral oil in turning of mild steel.

Author(s):  
Gaurav Tandekar

The surface roughness is paying a very dominant role in manufacturing industries. It is one of the parameters that cannot be avoided in machining process. Investigation was done on turning titanium alloy grade 2 with uncoated carbide insert in a CNC lathe. During machining on titanium, the high cutting temperature found, because of that friction in tool causes, for that purpose we are carry more cutting fluid, cutting tool & actual machining parameter. The present work shows the concentration of multi-walled carbon nanotube (MWCNT) & Graphene nano-particles are in used. The Nano fluid is prepared by using various ratios of nano-particles (MWCNT & Graphene), rice bran oil and blended oil as a base fluid. sodium dodecyl benzene sulfonate (SDBS) Surfactant added in cutting-fluid to provide better lubricant properties. The statistical planning of the experiment is done by using Taguchi method. The process parameters considered in the study are cutting speed, feed rate, depth of cut and surface roughness is considered as a response parameter.


Author(s):  
O Kalantari ◽  
MM Fallah ◽  
F Jafarian ◽  
SR Hamzeloo

In laser-assisted machining (LAM), the laser source is focused on the workpiece as a thermal source and locally increases the workpiece temperature and makes the material soft ahead of the cutting tool so using this method, the machining forces are reduced, which causes improving the surface quality and cutting tool life. Machinability of advanced hard materials is significantly low and conventional methods do not work effectively. Therefore, utilizing an advanced method is inevitable. The product life and performance of complex parts of the leading industry depends on surface integrity. In this work, the surface integrity features including microhardness, grain size and surface roughness (Ra) and also the maximum cutting temperature were investigated experimentally in LAM of Ti-6Al-4V. According to the results, cutting speed has inverse effect on the effectiveness of LAM process because with increasing speed (15 to 63 m/min), temperature decreases (524 °C to 359 °C) and surface roughness increases (0.57 to 0.71 μm). Enhancing depth of cut and feed has direct effect on the process temperature, grain size, microhardness and surface roughness.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Muhammad Yanis ◽  
Amrifan Saladin Mohruni ◽  
Safian Sharif ◽  
Irsyadi Yani

Thin walled titanium alloys are mostly applied in the aerospace industry owing to their favorable characteristic such as high strength-to-weight ratio. Besides vibration, the friction at the cutting zone in milling of thin-walled Ti6Al4V will create inconsistencies in the cutting force and increase the surface roughness. Previous researchers reported the use of vegetable oils in machining metal as an effort towards green machining in reducing the undesirable cutting friction. Machining experiments were conducted under Minimum Quantity Lubrication (MQL) using coconut oil as cutting fluid, which has better oxidative stability than other vegetable oil. Uncoated carbide tools were used in this milling experiment. The influence of cutting speed, feed and depth of cut on cutting force and surface roughness were modeled using response surface methodology (RSM) and artificial neural network (ANN). Experimental machining results indicated that ANN model prediction was more accurate compared to the RSM model. The maximum cutting force and surface roughness values recorded are 14.89 N, and 0.161 µm under machining conditions of 125 m/min cutting speed, 0.04 mm/tooth feed, 0.25 mm radial depth of cut (DOC) and 5 mm axial DOC. 


2020 ◽  
Vol 22 (4) ◽  
pp. 41-53
Author(s):  
Manojkumar Sheladiya ◽  
◽  
Shailee Acharya ◽  
Ghanshyam Acharya ◽  
◽  
...  

Introduction. The machinability is typical criteria to be investigated and different authors suggested different parameters describing its quantification. Different parameters i. e. speed, feed, depth of cut, tool work-piece combination, machine types and its condition, cutting fluid, machinist expertise, etc. are contributing directly to the tool life. The selection of the tool for the machining impacts greatly on the economic viability of the machining in terms of energy usage and tooling costs. The method of investigation. The current research emphasis mainly on tool life investigation when machining the mild steel specimens ISRO 50, BIS 1732:1989 at constant cutting speed i.e. 200 m / min. In the industries the mild steel material is commonly used for various products manufacturing. Considering the high demands on productivity and surface finish, machining at 200 m / min is the preferred. The computerized numerical control machine (CNC DX-150) is used for the turning. The four corner insert (TNMG 120408) is used for different machining times i.e. 10, 15, 20 and 25 minutes respectively. The flank wear of the tool is measured with calibrated optical microscope. The temperature of the tool corner during machining is continuously measured for possible impact of temperature on bonding properties of the tool insert and impact on red hardness. Results and discussion. The plot of flank wear vs. machining time will give the value of tool life. The other quality output parameter, such as surface roughness, is measured after machining, indicating surface irregularities in root means square value. Efforts have been made to identify the relationship of tool life, machining time, the quantity of metal removed, surface roughness, and tool bit temperature.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2016 ◽  
Vol 16 ◽  
pp. 7-15 ◽  
Author(s):  
Nirmal Kumar Mandal ◽  
Tanmoy Roy

Abstract. Kinetic energy of a machining process is converted into heat energy. The generated heat at cutting tool and work piece interface has substantial impact on cutting tool life and quality of the work piece. On the other hand, development of advanced cutting tool materials, coatings and designs, along with a variety of strategies for lubrication, cooling and chip removal, make it possible to achieve the same or better surface quality with dry or Minimum Quantity Lubrication (MQL) machining than traditional wet machining. In addition, dry and MQL machining is more economical and environment friendly. In this work, 20 no. of experiments were carried out under dry machining conditions with different combinations of cutting speed, feed rate and depth of cut and corresponding cutting temperature and surface roughness are measured. The no. of experiments is determined through Design of Experiments (DOE). Nonlinear regression methodology is used to model the process using Response Surface Methodology (RSM). Multi-objective optimization is carried using Genetic Algorithm which ensures high productivity with good product quality.


2019 ◽  
Vol 26 (4) ◽  
pp. 179-184
Author(s):  
Justyna Molenda

AbstractNowadays lot of scientific work inspired by industry companies was done with the aim to avoid the use of cutting fluids in machining operations. The reasons were ecological and human health problems caused by the cutting fluid. The most logical solution, which can be taken to eliminate all of the problems associated with the use of cooling lubricant, is dry machining. In most cases, however, a machining operation without lubricant finds acceptance only when it is possible to guarantee that the part quality and machining times achieved in wet machining are equalled or surpassed. Surface finish has become an important indicator of quality and precision in manufacturing processes and it is considered as one of the most important parameter in industry. Today the quality of surface finish is a significant requirement for many workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. In the present study, the influence of different machining parameters on surface roughness has been analysed. Experiments were conducted for turning, as it is the most frequently used machining process in machine industry. All these parameters have been studied in terms of depth of cut (ap), feed rate (f) and cutting speed (vc). As workpiece, material steel S235 has been selected. This work presents results of research done during turning realised on conventional lathe CDS 6250 BX-1000 with severe parameters. These demonstrate the necessity of further, more detailed research on turning process results.


Author(s):  
Emmanuel Awode ◽  
Sunday Albert Lawal ◽  
Matthew Sunday Abolarin ◽  
Oyewole Adedipe

Cutting fluids play a major role in machine operations, life of tools, workpiece quality and overall high productivity which are considered as potential input for minimal tool wear, minimal surface roughness and better machining finished product owing to the ability to prevent overheating of the workpiece and cutting tool. In this paper, the challenge of environmental biodegradability, tool wear and workpiece surface roughness prompt the need to evaluate and compare the performance of Jatropha oil based cutting fluid (JBCF) with mineral oil based cutting fluid (MBCF) during turning with AISI 304 Alloy steel which are presented. Test were conducted on the Physiochemical property, fatty acid composition (FAC), cutting fluids formulation of oil ratio to water ratio in proportion of 1:9, turning operation and response surface methodology (RSM) design of experiment were carried out and used respectively. Results from FAC indicated that jatropha seed oil (JSO) has an approximately 21.6% saturated fat with the main contributors being 14.2% palmitic acid. The physiochemical property results show pH value 8.36, Viscosity 0.52 mm2/s, resistant to corrosion, good stability and a milky colouration. The S/N ratio for main effect plot for JBCF and MBCF stand at 1250 CS, 1.15 FR and 0.65 DOC; and 500 CS, 1.15 FR and 0.65 respectively with R-sq = 85.14% and R-sq(adj) = 71.76% for JBCF Ra and R-sq = 71.24% and R-sq(adj) = 56.35% for JBCF Tw,  compared to R-sq = 84.44% R-sq(adj) = 70.43% is for MBCF Ra, and R-sq = 70.48% and  R-sq(adj)  = 55.92% for MBCF Tw. Conclusively, JBCF exhibit minimal surface roughness, minimal tool wear, minimal environmental biodegradability and overall better performance compare to MBCF which makes it more suitable for turning of AISI 304 Alloy steel and is in good agreement with previous work.


2021 ◽  
Author(s):  
Vinothkumar Sivalingam ◽  
Ganeshkumar Poogavanam ◽  
Yuvaraj Natarajan ◽  
Jie Sun

Abstract Atomized spray cutting fluid (ASCF) is a sophisticated machining technique that achieves higher productivity, enhanced surface quality, extended tool life, and cost benefits. This research aims to analyze the influence of cutting process parameters on Inconel 718 alloy turning in dry and ASCF cutting environments. The critical machining indices such as surface roughness, machining cost, power consumption, and tool life were analyzed concerning these two cooling environments. The cutting parameters were optimized using desirability functional analysis and two types of multicriteria decision making (MCDM) method, such as additive ratio assessment method (ARAS) and combinative distance-based assessment (CODAS) method, were investigated. The composite desirability index (CD) of optimum parameter setting(A2B1C2D2) is improved by 6.34 % compared to the initial parameter setting (A2B1C2D1). The optimum parameters from the MCDM technique are obtained as a cutting speed of 200 m/min, feed rate of 0.08 mm/rev, and depth of cut of 0.2 mm under ASCF environment. ASCF machining significantly minimize the surface roughness, machining cost and power consumption, maximize the tool life by about 16%, 51%, 17% and 48% respectively as compared with dry machining


2021 ◽  
Vol 12 (1) ◽  
pp. 235
Author(s):  
Putu Hadi Setyarini ◽  
Khairul Anam ◽  
Muhammad Wahyudi

<p class="Abstract">Environmentally friendly lubricants are lubricants that are easily dissolved in the environment and are not harmful to the ecosystem. It uses to reduce the heat in the contact area so that the machinability of the workpiece and the ability of the chisel will increase. To minimize the use of bio-cutting fluids, lubrication is carried out by minimum drop lubrication in the lathe process. The purpose of this research is to comply with the surface roughness of the workpiece and the shape of the chip. The material used is aluminum 6061, the natural oil used are rubber seed oil, virgin coconut oil, sunflower seed oil, and castor oil. The turning parameters were the depth of cut 0.5 mm, spindle speed of 330 rpm, feed rate 0.231 mm/rev, tool angle 90o, drop lubrication 192 ml/hour, infeed length 100 mm. The results of the research showed that virgin coconut oil has the lowest surface roughness. This is because the viscosity value of virgin coconut oil is very small so that the flow rate is able to work perfectly to lubricate the contact area. It has a thin chip configuration, the tool also wears but did not experience cracks.</p>


Sign in / Sign up

Export Citation Format

Share Document