Study on Dynamic Measurement of Plane Distance

2014 ◽  
Vol 625 ◽  
pp. 91-97
Author(s):  
Wei Chen Wang ◽  
Ding Chen ◽  
Hong Tang Gao ◽  
Zi Ben Yang

Step gauge is the most typical multiple target standard of plane distance with a wide range of applications. The calibration of step gauge is, however, difficult because of its unique structure. In this paper, a new method for measuring plane distance is presented. The principle of light-section microscope is used in accurate positioning of the planes being measured. Then the optical interferometry techniques are used to realize continuous dynamic measurement of the plane distance. Based on this method, a novel optical probe is built and installed on a laser interferometer for length measurements. A series of experiments were carried out for determining the accuracy of positioning the optical probe and repeatability of the measuring system. Experimental results show that measurement repeatability is better than 16 nm, and measurement uncertainty (k=2) is less than 0.03 μm + 1.0×10-6L, for a total length of L being measured in micrometers.

Author(s):  
Svitlana Lobchenko ◽  
Tetiana Husar ◽  
Viktor Lobchenko

The results of studies of the viability of spermatozoa with different incubation time at different concentrations and using different diluents are highlighted in the article. (Un) concentrated spermatozoa were diluented: 1) with their native plasma; 2) medium 199; 3) a mixture of equal volumes of plasma and medium 199. The experiment was designed to generate experimental samples with spermatozoa concentrations prepared according to the method, namely: 0.2; 0.1; 0.05; 0.025 billion / ml. The sperm was evaluated after 2, 4, 6 and 8 hours. The perspective of such a study is significant and makes it possible to research various aspects of the subject in a wide range. In this regard, a series of experiments were conducted in this area. The data obtained are statistically processed and allow us to highlight the results that relate to each stage of the study. In particular, in this article it was found out some regularities between the viability of sperm, the type of diluent and the rate of rarefaction, as evidenced by the data presented in the tables. As a result of sperm incubation, the viability of spermatozoa remains at least the highest trend when sperm are diluted to a concentration of 0.1 billion / ml, regardless of the type of diluent used. To maintain the viability of sperm using this concentration of medium 199 is not better than its native plasma, and its mixture with an equal volume of plasma through any length of time incubation of such sperm. Most often it is at this concentration of sperm that their viability is characterized by the lowest coefficient of variation, regardless of the type of diluent used, which may indicate the greatest stability of the result under these conditions. The viability of spermatozoa with a concentration of 0.1 billion / ml is statistically significantly reduced only after 6 or even 8 hours of incubation. If the sperm are incubated for only 2 hours, regardless of the type of diluent used, the sperm concentrations tested do not affect the viability of the sperm. Key words: boar, spermatozoa, sperm plasma, concentration, incubation, medium 199, activity, viability, rarefaction.


1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Toni Wendler ◽  
Torsten Prietzel ◽  
Robert Möbius ◽  
Jean-Pierre Fischer ◽  
Andreas Roth ◽  
...  

Abstract Background All current total hip arthroplasty (THA) systems are modular in design. Only during the operation femoral head and stem get connected by a Morse taper junction. The junction is realized by hammer blows from the surgeon. Decisive for the junction strength is the maximum force acting once in the direction of the neck axis, which is mainly influenced by the applied impulse and surrounding soft tissues. This leads to large differences in assembly forces between the surgeries. This study aimed to quantify the assembly forces of different surgeons under influence of surrounding soft tissue. Methods First, a measuring system, consisting of a prosthesis and a hammer, was developed. Both components are equipped with a piezoelectric force sensor. Initially, in situ experiments on human cadavers were carried out using this system in order to determine the actual assembly forces and to characterize the influence of human soft tissues. Afterwards, an in vitro model in the form of an artificial femur (Sawbones Europe AB, Malmo, Sweden) with implanted measuring stem embedded in gelatine was developed. The gelatine mixture was chosen in such a way that assembly forces applied to the model corresponded to those in situ. A study involving 31 surgeons was carried out on the aforementioned in vitro model, in which the assembly forces were determined. Results A model was developed, with the influence of human soft tissues being taken into account. The assembly forces measured on the in vitro model were, on average, 2037.2 N ± 724.9 N, ranging from 822.5 N to 3835.2 N. The comparison among the surgeons showed no significant differences in sex (P = 0.09), work experience (P = 0.71) and number of THAs performed per year (P = 0.69). Conclusions All measured assembly forces were below 4 kN, which is recommended in the literature. This could lead to increased corrosion following fretting in the head-neck interface. In addition, there was a very wide range of assembly forces among the surgeons, although other influencing factors such as different implant sizes or materials were not taken into account. To ensure optimal assembly force, the impaction should be standardized, e.g., by using an appropriate surgical instrument.


2021 ◽  
Vol 10 (8) ◽  
pp. 525
Author(s):  
Wenmin Yao ◽  
Tong Chu ◽  
Wenlong Tang ◽  
Jingyu Wang ◽  
Xin Cao ◽  
...  

As one of China′s most precious cultural relics, the excavation and protection of the Terracotta Warriors pose significant challenges to archaeologists. A fairly common situation in the excavation is that the Terracotta Warriors are mostly found in the form of fragments, and manual reassembly among numerous fragments is laborious and time-consuming. This work presents a fracture-surface-based reassembling method, which is composed of SiamesePointNet, principal component analysis (PCA), and deep closest point (DCP), and is named SPPD. Firstly, SiamesePointNet is proposed to determine whether a pair of point clouds of 3D Terracotta Warrior fragments can be reassembled. Then, a coarse-to-fine registration method based on PCA and DCP is proposed to register the two fragments into a reassembled one. The above two steps iterate until the termination condition is met. A series of experiments on real-world examples are conducted, and the results demonstrate that the proposed method performs better than the conventional reassembling methods. We hope this work can provide a valuable tool for the virtual restoration of three-dimension cultural heritage artifacts.


2021 ◽  
Author(s):  
Danila Piatov ◽  
Sven Helmer ◽  
Anton Dignös ◽  
Fabio Persia

AbstractWe develop a family of efficient plane-sweeping interval join algorithms for evaluating a wide range of interval predicates such as Allen’s relationships and parameterized relationships. Our technique is based on a framework, components of which can be flexibly combined in different manners to support the required interval relation. In temporal databases, our algorithms can exploit a well-known and flexible access method, the Timeline Index, thus expanding the set of operations it supports even further. Additionally, employing a compact data structure, the gapless hash map, we utilize the CPU cache efficiently. In an experimental evaluation, we show that our approach is several times faster and scales better than state-of-the-art techniques, while being much better suited for real-time event processing.


CORROSION ◽  
1976 ◽  
Vol 32 (10) ◽  
pp. 414-417 ◽  
Author(s):  
R. WALKER

Abstract The use of triazole, benzotriazole, and naphthotriazole as corrosion inhibitors for brass is briefly reviewed. The corrosion of 70/30 brass immersed in a wide range of solutions is reported both with and without the inhibitors. The inhibitor efficiency of benzotriazole is given as a function of the solution pH and the concentration used. Triazole was only effective in mildly corrosive solutions and benzotriazole and naphthotriazole were much better. Generally naphthotriazole was better than benzotriazole but is much more expensive and a higher concentration of benzotriazole can give the same protection as naphthotriazole at a much lower cost.


1987 ◽  
Vol 60 (3) ◽  
pp. 381-416 ◽  
Author(s):  
B. S. Nau

Abstract The understanding of the engineering fundamentals of rubber seals of all the various types has been developing gradually over the past two or three decades, but there is still much to understand, Tables V–VII summarize the state of the art. In the case of rubber-based gaskets, the field of high-temperature applications has scarcely been touched, although there are plans to initiate work in this area both in the U.S.A. at PVRC, and in the U.K., at BHRA. In the case of reciprocating rubber seals, a broad basis of theory and experiment has been developed, yet it still is not possible to design such a seal from first principles. Indeed, in a comparative series of experiments run recently on seals from a single batch, tested in different laboratories round the world to the same test procedure, under the aegis of an ISO working party, a very wide range of values was reported for leakage and friction. The explanation for this has still to be ascertained. In the case of rotary lip seals, theories and supporting evidence have been brought forward to support alternative hypotheses for lubrication and sealing mechanisms. None can be said to have become generally accepted, and it remains to crystallize a unified theory.


1995 ◽  
Vol 1 (2) ◽  
pp. 163-190 ◽  
Author(s):  
Kenneth W. Church ◽  
William A. Gale

AbstractShannon (1948) showed that a wide range of practical problems can be reduced to the problem of estimating probability distributions of words and ngrams in text. It has become standard practice in text compression, speech recognition, information retrieval and many other applications of Shannon's theory to introduce a “bag-of-words” assumption. But obviously, word rates vary from genre to genre, author to author, topic to topic, document to document, section to section, and paragraph to paragraph. The proposed Poisson mixture captures much of this heterogeneous structure by allowing the Poisson parameter θ to vary over documents subject to a density function φ. φ is intended to capture dependencies on hidden variables such genre, author, topic, etc. (The Negative Binomial is a well-known special case where φ is a Г distribution.) Poisson mixtures fit the data better than standard Poissons, producing more accurate estimates of the variance over documents (σ2), entropy (H), inverse document frequency (IDF), and adaptation (Pr(x ≥ 2/x ≥ 1)).


2020 ◽  
Vol 499 (4) ◽  
pp. 4905-4917
Author(s):  
S Contreras ◽  
R E Angulo ◽  
M Zennaro ◽  
G Aricò ◽  
M Pellejero-Ibañez

ABSTRACT Predicting the spatial distribution of objects as a function of cosmology is an essential ingredient for the exploitation of future galaxy surveys. In this paper, we show that a specially designed suite of gravity-only simulations together with cosmology-rescaling algorithms can provide the clustering of dark matter, haloes, and subhaloes with high precision. Specifically, with only three N-body simulations, we obtain the power spectrum of dark matter at z = 0 and 1 to better than 3 per cent precision for essentially all currently viable values of eight cosmological parameters, including massive neutrinos and dynamical dark energy, and over the whole range of scales explored, 0.03 < $k/{h}^{-1}\, {\rm Mpc}^{-1}$ < 5. This precision holds at the same level for mass-selected haloes and for subhaloes selected according to their peak maximum circular velocity. As an initial application of these predictions, we successfully constrain Ωm, σ8, and the scatter in subhalo-abundance-matching employing the projected correlation function of mock SDSS galaxies.


2018 ◽  
Vol 8 (8) ◽  
pp. 1317
Author(s):  
Adam Card ◽  
Mohammad Mokim ◽  
Feruz Ganikhanov

We demonstrate and analyze a series of experiments in traditional and soft condensed matter using coherent optical spectroscopy and microscopy with ultrafast time resolution. We show the capabilities of resolving both real and imaginary parts of the third-order nonlinearity in the vicinity of Raman resonances from a medium probed within microscopic volumes with an equivalent spectral resolution of better than 0.1 cm−1. We can differentiate between vibrations of various types within unit cells of crystals, as well as perform targeted probes of areas within biological tissue. Vibrations within the TiO6 octahedron and the ones for the Ti-O-P intergroup were studied in potassium titanyl phosphate crystal to reveal a multiline structure within targeted phonon modes with closely spaced vibrations having distinctly different damping rates (~0.5 ps−1 versus ~1.1 ps−1). We also detected a 1.7–2.6 ps−1 decay of C-C stretching vibrations in fat tissue and compared that with the corresponding vibration in oil.


Sign in / Sign up

Export Citation Format

Share Document