Mechanical Properties Improvement of Semi-Solid State Joining of Aluminum Alloys SSM A356

2015 ◽  
Vol 658 ◽  
pp. 146-150 ◽  
Author(s):  
Atsadawoot Geaowdee ◽  
Prapas Muangjunburee

The aim of this research was to study semi-solid state joining of SSM A356 aluminum alloys which welded at its semi-solid state temperature by using oxygen – acetylene heat source. Then a stirrer was used to stir the weld seam. The joining parameters were rotation speed 1,110 with welding speed 120 mm/min and rotation speed 1,320 rpm with welding speed 160 mm/min. The joining temperatures were 575-590 and 590-610 oC. Joining was performed under nitrogen shielding gas and under argon shielding gas. Physical appearance, macrostructure, microstructure and mechanical properties were analyzed. The results indicated that the weld’s microstructure consisted of globular structure. In addition, porosities were found at the top of weld. However, minimum porosities were obtained from joints under argon shielding gas. The highest tensile strength was achieved from rotation speed at 1,110 rpm with welding speed at 120 mm/min under argon shielding gas with the value of 173 MPa. The joint efficiency was 86 % compared to the base metal.

2014 ◽  
Vol 496-500 ◽  
pp. 92-95 ◽  
Author(s):  
Atsadawoot Geaowdee ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

The purpose of this research is to investigate the semi-solid state joining of SSM 356 aluminum alloy which welded at its semi-solid state by using oxygen - acetylene as a heat source. Then a stirrer was used to stir the weld seam. Joining was performed under nitrogen shielding gas. The parameters of this study were rotation speed at 1,110 and 1,320 rpm, welding speed at 120 and 160 mm/min, semi-solid state temperatures 575-590 and 590-610 oC. The results indicated that the weld's microstructure consisted of irregular globular structure. In addition, porosities were found at top of weld metal. The highest tensile strength and elongation were obtained from rotation speed at 1,110 rpm, welding speed at 120 mm/min and joining temperature at 575-590 oC.


2014 ◽  
Vol 496-500 ◽  
pp. 371-375 ◽  
Author(s):  
Apirit Petkhwan ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

In this research, the semi-solid state joining of SSM A356 aluminum alloy was investigated. The butt-joint of SSM A356 was heated by an induction heating coil to create a localized semisolid pool. Then a stirrer was applied into the joint seam in order to mix the weld metal. The accurate controlling of temperature during joining was measured. The effects of stirring rate on physical, macrostructure, microstructure and mechanical properties were studied. Experimental results showed that increase in stirring rates, the surface of the joint was smooth. The weld metal consisted of the globular microstructure and also voids. The density of weld metal zone increased by an appropriate stirring. The best tensile strength was achieved with 1750 rpm, 70 mm/min for 103.4 MPa.


2015 ◽  
Vol 651-653 ◽  
pp. 1569-1574 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

Abstracts: This paper presents an overview of measured mechanical properties of thixoformed aluminium 7075 feedstock produced by the direct thermal method (DTM). The DTM feedstock billets were processed with a pouring temperature of 685 °C and holding periods of 20 s, 40 s and 60 s before being quenched and subsequently thixoformed. A conventionally cast feedstock billet was produced with a pouring temperature of 685 °C and was allowed to solidify without quenching. The feedstock billets were later formed by an injection test unit in the semi-solid state. Tensile testing was then conducted on the thixoformed feedstock billets. Tensile properties for 7075 DTM thixoformed feedstock billets were found significantly influenced by the thixoformed component density. Samples with longer holding times were found to have higher density and higher tensile strength.


2021 ◽  
Vol 21 (9) ◽  
pp. 4877-4880
Author(s):  
Gyeong Woo Kim ◽  
Se Min Jeong

This study aimed to evaluate the soundness of solid-state welded steels. STS 430F alloy with a rod type was selected as experimental material, and the friction welding was conducted at a rotation speed of 2,000 RPM and upset length of 3 mm. The application of friction welding on STS 430F rods led to significant grain refinement in the welded zone (1.3 µm) compared to that observed in the base material (16.8 µm). The refined grains in the welds contributed to the development of the mechanical properties. In particular, the Vickers microhardness was increased by approximately 25% compared to the base material, and the fracture at the tensile specimen of the welds occurred at the base material zone and not in the welded zone, which suggests a soundly welded state on the STS 430F rods.


2008 ◽  
Vol 141-143 ◽  
pp. 695-700 ◽  
Author(s):  
Sebastian Dziallach ◽  
Wolfgang Püttgen ◽  
Wolfgang Bleck

The process of thixoforming incorporates a series of forming processes in the semi-solid state, which can be categorized between the conventional processes of forging and casting and combines the advantages of these processes. Thixoforming of steels in the semi-solid state, requires round, solid particles (globulites) in a liquid matrix which is deformed with low forming forces. In order to achieve laminar material flow and to produce segregation-free components, the material must fulfil diverse criteria. First, the melting interval should be as large as possible for an easy temperature regulation. Next, low solidus and liquidus temperatures are advantageous regarding tool loading. Additionally, thixoformable steels should show a melting behaviour that is finegrained and globular. Furthermore, these steels should possess low contents of intraglobular liquid phase fractions. This paper gives a survey of the current state of steel Thixoforming and deals with the development of adaptive heat treatment strategies. Regarding the structure formation and the development of suitable heat treatment strategies, the once semi-solid state yields new structures that can be applied in ways not previously possible with conventional hardening processes. New microstructures and up to date unknown better mechanical properties can be adjusted with an optimised heat treatment strategy. By this, new fields of application for thixo-materials can be entered and also advanced procedures for special applications can be established. For example the steel X210CrW12 leads to a very hard material with high wear-resistance, which can be used at higher temperatures than the conventional hardened material. In general, new generic microstructures after thixoforming results in unexpected favourable mechanical properties. Problems arise with respect to segregation and pores which resulting in inhomogeneous property distributions.


2014 ◽  
Vol 887-888 ◽  
pp. 1273-1279 ◽  
Author(s):  
Kulyuth Boonseng ◽  
Chaiyoot Meengam ◽  
Suppachai Chainarong ◽  
Prapas Muangjunburee

SSM 356 aluminum alloys was obtained from a rheocasting technique named gas induced semi solid process has globular structure on base. The friction welding method conserve microstructure that is similar to the original structure of the base material a globular structure. It is also found that a rotational speed of 1750 RPM, burn of Length of 3.2 millimeters and welding time (upset time) of 30 second can produce a very good weld. The results of the investigation have shown that a have average hardness in the range 58.13 HV.


Sign in / Sign up

Export Citation Format

Share Document