Development of Adapted Heat Treatments for Steels out of the Semi-Solid State after Thixoforming

2008 ◽  
Vol 141-143 ◽  
pp. 695-700 ◽  
Author(s):  
Sebastian Dziallach ◽  
Wolfgang Püttgen ◽  
Wolfgang Bleck

The process of thixoforming incorporates a series of forming processes in the semi-solid state, which can be categorized between the conventional processes of forging and casting and combines the advantages of these processes. Thixoforming of steels in the semi-solid state, requires round, solid particles (globulites) in a liquid matrix which is deformed with low forming forces. In order to achieve laminar material flow and to produce segregation-free components, the material must fulfil diverse criteria. First, the melting interval should be as large as possible for an easy temperature regulation. Next, low solidus and liquidus temperatures are advantageous regarding tool loading. Additionally, thixoformable steels should show a melting behaviour that is finegrained and globular. Furthermore, these steels should possess low contents of intraglobular liquid phase fractions. This paper gives a survey of the current state of steel Thixoforming and deals with the development of adaptive heat treatment strategies. Regarding the structure formation and the development of suitable heat treatment strategies, the once semi-solid state yields new structures that can be applied in ways not previously possible with conventional hardening processes. New microstructures and up to date unknown better mechanical properties can be adjusted with an optimised heat treatment strategy. By this, new fields of application for thixo-materials can be entered and also advanced procedures for special applications can be established. For example the steel X210CrW12 leads to a very hard material with high wear-resistance, which can be used at higher temperatures than the conventional hardened material. In general, new generic microstructures after thixoforming results in unexpected favourable mechanical properties. Problems arise with respect to segregation and pores which resulting in inhomogeneous property distributions.

2015 ◽  
Vol 651-653 ◽  
pp. 1569-1574 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

Abstracts: This paper presents an overview of measured mechanical properties of thixoformed aluminium 7075 feedstock produced by the direct thermal method (DTM). The DTM feedstock billets were processed with a pouring temperature of 685 °C and holding periods of 20 s, 40 s and 60 s before being quenched and subsequently thixoformed. A conventionally cast feedstock billet was produced with a pouring temperature of 685 °C and was allowed to solidify without quenching. The feedstock billets were later formed by an injection test unit in the semi-solid state. Tensile testing was then conducted on the thixoformed feedstock billets. Tensile properties for 7075 DTM thixoformed feedstock billets were found significantly influenced by the thixoformed component density. Samples with longer holding times were found to have higher density and higher tensile strength.


2010 ◽  
Vol 654-656 ◽  
pp. 1420-1423 ◽  
Author(s):  
Chun Wei Su ◽  
Peng Hooi Oon ◽  
Y.H. Bai ◽  
Anders W.E. Jarfors

The liquid forging process has the flexibilities of casting in forming intricate profiles and features while imparting the liquid forged components with superior mechanical strength compared to similar components obtained via casting. Additionally, liquid forging requires significantly lower machine loads compared to solid forming processes. Currently, components that are formed by liquid forging are usually casting alloys of aluminum. This paper investigates the suitability of liquid forging a wrought aluminum alloy Al-6061 and the mechanical properties after forming. The proper handling of the Al-6061 alloy in its molten state is important in minimizing oxidation of its alloying elements. By maintaining the correct alloying composition of Al-6061 after liquid forging, these Al-6061 samples can subsequently undergo a suitable heat treatment process to significantly improve their yield strengths. Results show that the yield strengths of these liquid forged Al-6061 samples can be increased from about 90MPa, when they are in the as-liquid forged state, to about 275MPa after heat treatment. This improved yield strength is comparable to that of Al-6061 samples obtained by solid forming processes. As such, the liquid forging process here has been shown to be capable of forming wrought aluminum alloy components that has the potential for structural applications.


2012 ◽  
Vol 271-272 ◽  
pp. 17-20
Author(s):  
Shu Yan Wu ◽  
Ze Sheng Ji ◽  
Chun Ying Tian ◽  
Ming Zhong Wu

This work is to study the influence of heat treatment on microstrudture and mechanical properties of AZ31B magnesium alloy prepared by solid -state recycling. AZ31B magnesium alloy chips were recycled by hot extruding. Three different heat treatments were conducted for recycled alloy. Mechanical properties and microstructure of the recycled specimen and heat treated specimen were investigated. 300°C×2h annealing specimen exhibits finer grain due to static recrystallization, and microstructure of 400°C×2h annealing specimen becomes more coarse. 300°C×2h annealing treatment improves obviously strength and ductility of recycled alloy. Ultimate tensile strength of alloy decreases and elongation to failure increases after 400°C×2h annealing. Grain size, dislocation density and bonding of chips have an effect on the elongation of recycled materials. 190°C×8h ageing has no influence on microstructure and mechanical properties of recycled alloy.


2014 ◽  
Vol 496-500 ◽  
pp. 371-375 ◽  
Author(s):  
Apirit Petkhwan ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

In this research, the semi-solid state joining of SSM A356 aluminum alloy was investigated. The butt-joint of SSM A356 was heated by an induction heating coil to create a localized semisolid pool. Then a stirrer was applied into the joint seam in order to mix the weld metal. The accurate controlling of temperature during joining was measured. The effects of stirring rate on physical, macrostructure, microstructure and mechanical properties were studied. Experimental results showed that increase in stirring rates, the surface of the joint was smooth. The weld metal consisted of the globular microstructure and also voids. The density of weld metal zone increased by an appropriate stirring. The best tensile strength was achieved with 1750 rpm, 70 mm/min for 103.4 MPa.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 147 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Axel von Hehl

Most heat treatment simulations of precipitation-hardenable aluminum alloys are incomplete or restricted to sub-steps of the process chain. In general, the studies addressing the heat treatment of aluminum components have only provided a qualitative guidance of heat treatment, which does not match the heat treatment that is necessary for specific parts with specific requirements. Thus, a quick and accurate simulation of the whole heat treatment process would hold great economic benefit for industrial applications in predicting suitable heat treatment processes that are able to meet the required mechanical properties of proposed novel aluminum components. In this paper, the development of a time and cost efficient method for generating such prediction models is presented by means of an example aluminum alloy EN AW-6082. During the process sub-steps of solution annealing, quenching and aging, the time-temperature correlations connected to the precipitation-hardening conditions were analyzed. The precision of the prediction model depends on the size of the material database, which should be able to be adjusted to the individual requirements of the simulation user. In order to obtain the greatest time and cost efficiency in generating such a model, a specific experimental design was developed. The results of the method development are presented and discussed.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 660 ◽  
Author(s):  
Jure Krolo ◽  
Branimir Lela ◽  
Ivana Dumanić ◽  
Franjo Kozina

The main aim of this paper is to present an environmentally friendly method for aluminum recycling. Development of new recycling technologies in order to increase scrap reuse potential and CO2 emission savings are of the main importance for aluminum circular economy. In this paper, aluminum chips waste was recycled without any remelting phase in order to increase energy and material savings. The presented process is usually called solid state recycling or direct recycling. Solid state recycling process consists of chips cleaning, cold pre-compaction and hot direct extrusion followed by a combination of equal channel angular pressing (ECAP) and heat treatment. Influence of holding time during solid solution treatment and both artificial aging time and temperature on mechanical properties of the recycled EN AW 6082 aluminum chips were investigated. A comprehensive number of the experiments were performed utilizing design of experiments approach and response surface methodology. Regression models were developed for describe the influence of heat treatment parameters for presented solid state recycling process on mechanical properties of the recycled samples. Utilizing novel procedure high quality recycled samples were obtained with mechanical properties comparable with commercially produced EN AW 6082 aluminum alloy in T6 temper condition. Metallographic analysis of the recycled samples was also performed.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 282 ◽  
Author(s):  
Gyeong Yun Baek ◽  
Gwang Yong Shin ◽  
Ki Yong Lee ◽  
Do Sik Shim

This study focused on the mechanical and metallurgical characteristics of high-wear-resistance steel (HWS) deposited using directed energy deposition (DED) for metal substrate hardfacing or repairing. As post-deposition heat treatment changes the metallurgical characteristics of deposits, the effect of post-deposition heat treatment on the mechanical properties was investigated via microstructure observation and by conducting hardness, wear, and impact tests. The obtained micro-images showed that the deposited HWS layers exhibit cellular and columnar dendrites, and the microstructure of heat-treated HWS (HT-HWS) transformed its phase during quenching and tempering. The hardness and wear resistance of the HT-HWS deposits were higher than those of the HWS deposited specimen, whereas the latter exhibited a higher fracture toughness. The matrix microstructure and carbide characteristics, which are characterized by the chemical composition of the materials, significantly influenced the mechanical properties.


2008 ◽  
Vol 141-143 ◽  
pp. 283-288 ◽  
Author(s):  
Manel Campillo ◽  
Maite T. Baile ◽  
Sergi Menargues ◽  
Antonio Forn

EN AC-46500 aluminium components are formed by Semi-Solid Rheocasting (SSR) in an industrial plant using a 700 tons high pressure machine. The dies wear was designed by the PLCO model of the ProCast simulation software. The components have had a good structural integrity and the mechanical properties after T6 treatment have been equivalent to that obtained by the same alloy by die cast. The present work describes the SSR forming process, the resulting microstructure as well as the optimization of the ageing heat treatment by hardness evolution. The results of the tensile tests make these clear.


Sign in / Sign up

Export Citation Format

Share Document