Multi-Functional High-Performance Cement Based Composite

2016 ◽  
Vol 677 ◽  
pp. 53-56 ◽  
Author(s):  
Zdeňka Bažantová ◽  
Karel Kolář ◽  
Petr Konvalinka ◽  
Jiří Litoš

The paper introduces development of new type of high-performance Portland cement based composite applicable for number of practical utilization. The fundaments of performed research was to design mixture with controlled process of hydration, easy production, suitable time of setting, good workability and rapid evolution of mechanical properties as well as satisfactory long-term stability of hardened composite. Selected mixture were evaluated by means of mechanical properties and volume changes determination.

Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 155
Author(s):  
Yan Su ◽  
Ting Liu ◽  
Caiqiao Song ◽  
Aiqiao Fan ◽  
Nan Zhu ◽  
...  

As an essential electrolyte for the human body, the potassium ion (K+) plays many physiological roles in living cells, so the rapid and accurate determination of serum K+ is of great significance. In this work, we developed a solid-contact ion-selective electrode (SC-ISE) using MoS2/Fe3O4 composites as the ion-to-electron transducer to determine serum K+. The potential response measurement of MoS2/Fe3O4/K+-ISE shows a Nernst response by a slope of 55.2 ± 0.1 mV/decade and a low detection limit of 6.3 × 10−6 M. The proposed electrode exhibits outstanding resistance to the interference of O2, CO2, light, and water layer formation. Remarkably, it also presents a high performance in potential reproducibility and long-term stability.


Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6521-6525 ◽  
Author(s):  
Ming Zhuo ◽  
Yuejiao Chen ◽  
Tao Fu ◽  
Haonan Zhang ◽  
Zhi Xu ◽  
...  

Ni(SO4)0.3(OH)1.4 nanobelts are utilized in a humidity sensor by a facile method. The nanobelt based sensor shows a high sensitivity, fast response and long-term stability in the sensing process.


RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35831-35839 ◽  
Author(s):  
Mustafa K. A. Mohammed

Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability.


2020 ◽  
Author(s):  
Haozhen Dou ◽  
Mi Xu ◽  
Baoyu Wang ◽  
Zhen Zhang ◽  
Guobin Wen ◽  
...  

Abstract Cellular membranes provide ideal archetypes for molecule or ion separations with sub-angstrom scale precision, which are featured with both extremely high permeability and selectivity due to the well-defined membrane protein channels. However, the development of bioinspired membranes with artificial channels for sub-angstrom scale ethylene/ethane (0.416 nm / 0.443 nm) separation remains an uncharted territory and a significant challenge. Herein, a bioinspired nano-ordered liquid membrane is constructed by a facile ion/molecule self-assembly strategy for highly efficient ethylene/ethane separation, which mimics the structure of cellular membrane elegantly and possesses plenty of three-dimensional (3D) nanochannels. The elaborate regulation of non-covalent interactions by optimizing the ion/molecule compositions within membrane confers the nano-ordered liquid structure with interpenetrating and bi-continuous apolar domains and polar domains, which results in the formation of regular carrier wires and enormous 3D interconnected ethylene transport nanochannels. By virtue of these 3D nanochannels, the bioinspired nano-ordered liquid membrane manifests simultaneously super-high selectivity, excellent permeance and long-term stability, which exceeds previously reported ethylene/ethane separation membranes. This methodology in this work for construction of bioinspired membrane with tunable 3D nanochannels through ion/molecule self-assembly will enlighten the design and development of high-performance separation membranes for angstrom/sub-angstrom scale ion or molecule separations.


RSC Advances ◽  
2015 ◽  
Vol 5 (106) ◽  
pp. 87477-87483 ◽  
Author(s):  
Jie Xiong ◽  
Chengran Jiao ◽  
Minfang Han ◽  
Wentao Yi ◽  
Jie Ma ◽  
...  

A NiO-GDC‖GDC‖Ba0.9Co0.7Fe0.2Nb0.1O3−δ cell fed with UCG gas demonstrated exceptional electrochemical performance and desirable long term stability.


2021 ◽  
pp. 1-27
Author(s):  
Yichen Bao ◽  
Kai Liu ◽  
Quan Zheng ◽  
Lulu Yao ◽  
Yufu Xu

Abstract Pickering emulsion is a new type of stable emulsion made by ultra-fine solid particles instead of traditional surfactants as stabilizers, which has received widespread attention in recent years. The preparation methods of stator-rotor homogenization, high-pressure homogenization, and ultrasonic emulsification were compared with others in this work. The main factors affecting the stability of Pickering emulsion are the surface humidity of the solid particles, the polarity of the oil phase, and the oil-water ratio. These factors could affect the nature of the solid particles, the preparation process of Pickering emulsion and the external environment. Consequently, the long-term stability of Pickering emulsion is still a challenge. The tribological investigations of Pickering emulsion were summarized, and the multifunctional Pickering emulsion shows superior prospects for tribological applications. Moreover, the latest development of Pickering emulsion offers a new strategy for smart lubrication in the near future.


2019 ◽  
Vol 12 (2) ◽  
pp. 675-683 ◽  
Author(s):  
Yue Wu ◽  
Hang Yang ◽  
Yan Zou ◽  
Yingying Dong ◽  
Jianyu Yuan ◽  
...  

A dialkylthio-substituted conjugated polymer is designed and synthesized as a donor material for high-performance polymer solar cells with long-term stability.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 251
Author(s):  
Pengrui Jin ◽  
Michiel Robeyn ◽  
Junfeng Zheng ◽  
Shushan Yuan ◽  
Bart Van der Bruggen

High-performance positively-charged nanofiltration (NF) membranes have a profound significance for water softening. In this work, a novel monomer, tris(3-aminopropyl)amine (TAEA), with one tertiary amine group and three primary amine groups, was blended with trace amounts of piperazine (PIP) in aqueous solution to fabricate a positively-charged NF membrane with tunable performance. As the molecular structures of TAEA and PIP are totally different, the chemical composition and structure of the polyamine selective layer could be tailored via varying the PIP content. The resulting optimal membrane exhibited an excellent water permeability of 10.2 LMH bar−1 and a high rejection of MgCl2 (92.4%), due to the incorporation of TAEA/PIP. In addition, this TAEA NF membrane has a superior long-term stability. Thus, this work provides a facile way to prepare a positively charged membrane with an efficient water softening ability.


2019 ◽  
Vol 7 (37) ◽  
pp. 11569-11580 ◽  
Author(s):  
Athithan Maheshwaran ◽  
Vijaya Gopalan Sree ◽  
Ho-Yeol Park ◽  
Woosum Cho ◽  
Hyein Kim ◽  
...  

Highly efficient (D–π–A)-type host and green Ir(iii) complexes are introduced for solution-processed PHOLEDs that achieve high CE with considerably high EQE. The devices with symmetrical complex show more stable than those with asymmetrical complex.


Sign in / Sign up

Export Citation Format

Share Document