Tribological Performance Comparison and Analysis on Friction Material: Four Modified Phenolic (PF) Resins

2016 ◽  
Vol 693 ◽  
pp. 653-661 ◽  
Author(s):  
Da Bin Zhang ◽  
Can Li Li ◽  
Yang Cao ◽  
Ze Lu ◽  
Qi Xiang Cui

This paper makes PF weaving friction material (p0.0) from tung oil, PF weaving friction material (BP) from boric acid, modified PF weaving friction material (SP) of nanopalygorskite by in-situ method, and modified PF weaving friction material (MP) of nanopalygorskite by blending method. The contrast tests of frictional properties are carried out on DMS-1 friction-abrasion tester. Hot recession test is performed on CHASE-M600 testing machine, and surface appearance analysis of friction sample is made on electronic probe. The result shows that after modification, the heat resistance and thermal stability of PF are all improved to different extent. SP friction material has best thermal stability and strongest braking ability under high temperature; while BP takes second place, and P0.0 is the worst. The heat resistance of BP, SP and MP is stronger than P0.0. The critical temperature of hot recession for weaving friction material on the base of nanopalygorskite/tung oil PF raises by 40~50°C. On the aspect of frictional properties, friction coefficients of SP, BP, and MP show quite stable. Among these samples, SP has the most stable friction coefficient, and P0.0 the worst. The wear rate of SP, BP and MP has the same trend with the temperature changes. However, the wear rate of P0.0 is getting intense with temperature rise. Its wear rate is much higher than SP, BP, and MP’s under same temperature.

2014 ◽  
Vol 609-610 ◽  
pp. 8-13 ◽  
Author(s):  
Hua Wei Nie ◽  
Yuan Kang Zhou ◽  
Lv Yang ◽  
Yang Cao

Mass fraction of 1.5%, 3% of the nanomontmorillonite (MMT) were separately added in the phenol prepolymer, phenolic resin/ MMT was synthesized by in-situ method (it is called PF/M). The PF/M was carried out TG analysis using thermal analyser, and the synthetic resin PF/M were as new resin matrix to prepare semimetallic friction material, tribological performance test was carried on XD-MSM fixed speed type friction-wear testing machine in accordance with the GB_5763-2008. The results show that the heat resistance of composite PF/M and tribological performance of friction material are best when nanoMMT is 3% in the resin, the Carbon residue rate of PF/M is an increase of 37% compared with PF without nanoparticles at 600°C, thermal recession temperature of sample by the preparation of PF/M increases above 100°C, and it has stable friction coefficient, overall wear rate decreases 26%, especially in high temperature stage at 350°C, the wear rate decreases significantly, its wear rate decreases 30%.


Author(s):  
О.В. Башков ◽  
А.А. Афанасьева

В статье приведены результаты исследования фрикционных свойств и структуры нового композиционного фрикционного материала (КФМ). В ходе исследования были разработаны восемь перспективных составов КФМ, полученных методом порошковой металлургии. Фрикционные испытания новых материалов проводились на испытательной машине на трение и износ ИИ5018, оснащённой программным комплексом Tester 3.0, позволяющим точно фиксировать изменение момента трения в течение испытания с построением графика и автоматическим расчётом параметров трения. Методика испытаний позволила имитировать условия фрикционного взаимодействия, возникающие в муфтах электроприводов, применяемых в наземном и морском транспорте. По результатам испытаний оценивались величина коэффициента трения и его стабильность на протяжении цикла испытания и в диапазоне рабочих регулировок электропривода, а также износостойкость КФМ. На основании исследований структуры поверхности трения и качественной оценки стабильности коэффициента трения был определён оптимальный состав КФМ, способный обеспечить стабильную и безопасную работу электропривода в диапазоне рабочих регулировок. The article presents the results of a study of the frictional properties and structure of a new composite frictional material (CFM). In the course of the study, eight promising CFM compositions were developed, obtained by the method of powder metallurgy. Friction tests were carried out on a friction and wear testing machine II5018, equipped with the software package Tester 3.0, which allows registering the change in friction moment during the test with plotting and automatic calculation of friction parameters. The test technique made it possible to simulate the conditions of frictional interaction arising in the couplings of electric drives used in land and sea transport. After the tests, the value of the friction coefficient, its stability during the test cycle and in the range of operating adjustments of the electric drive and the wear resistance of the CFM were evaluated. Based on the analysis of the structure of the friction surface and a qualitative assessment of the stability of the coefficient of friction, the optimal composition of the CFM capable of ensuring stable and safe operation of the electric drive in the range of operating adjustments was determined.


2012 ◽  
Vol 531-532 ◽  
pp. 8-12
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

Organic fibres (Kevlar/ Arbocel / Acrylic) have good thermal stability, higher surface area and bulk density. The optimization of organic fibres percentage for thermal behaviour is considered using TGA. The temperature raise during brake application will be between 150-4000 C and this temperature zone is very critical to determine the fade characteristics during friction testing. Hence, three different friction composites are developed with the same formulation varying only the Kevlar, Arbocel and Acrylic fibres which are compensated by the inert filler namely the barites and are designated as NA01, NA02 and NA03 respectively. After the fabrication, the TGA test reveals that the composite NA03 has minimum weight loss. The friction coefficient test rig is then used to test the friction material as per SAE J661a standards. The results prove that the brake pad with minimum weight loss during TGA has higher friction stability. Thus, we can correlate the thermal stability with the stability of friction.


1970 ◽  
Vol 12 (6) ◽  
pp. 515-516
Author(s):  
M. A. Krishtal ◽  
E. P. Ponomarenko ◽  
Yu. K. Belov ◽  
A. P. Mokrov

2013 ◽  
Vol 785-786 ◽  
pp. 123-126
Author(s):  
Ying Ye ◽  
Kun Yan Wang ◽  
Ge Chang ◽  
Qian Ying Jiang

Polypropylene/organoclay modified by dodecanol phase change material were prepared by melt blending method. The thermal stability and crystallization behavior was studied by thermogravimetry (TG), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). TG results indicated the window of processing of PP could be improved by adding small amount organoclay modified by dodecanol to the blend. DSC showed the organoclay modified by dodecanol affected the crystallization behavior of PP as heterogeneous nucleation agent. XRD results show that the organoclay modified by dodecanol does not change the crystal structure in the blends but only decrease the intensity of the diffraction peak.


2017 ◽  
Vol 30 (6) ◽  
pp. 752-764 ◽  
Author(s):  
Xue Teng ◽  
Lefei Wen ◽  
Yunxia Lv ◽  
Wenge Tang ◽  
Xiaogang Zhao ◽  
...  

Two series of 10% polytetrafluoroethylene (PTFE)/polyether ether ketone (PEEK) composites reinforced with potassium titanate whisker (PTW/PTFE/PEEK) and chopped glass fiber (GF/PTFE/PEEK) were prepared and characterized. We investigated the effects of the additives on thermal stability, tribological properties, mechanical properties, and rheological behavior. The results illustrated that the mechanical properties of 10% PTFE/PEEK blend can be dramatically improved by incorporating either PTW or GF; however, the reinforcing effect of GF was found to be superior. It was found that 1% additive resulted in blends with the best tribological properties. Compared to the unmodified blend, the friction coefficient and wear rate of the 1% PTW blend decreased by 7.2% and 21%, respectively, while the corresponding values of 1% GF blend decreased by 0.66% and 51%, respectively.


2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.


2020 ◽  
Vol 846 ◽  
pp. 37-41
Author(s):  
Pattarabordee Khaigunha ◽  
Tanakorn Wongwuttanasatian ◽  
Amnart Suksri

This study investigates the effects of micron-sized eggshells filler on resistance to tracking and erosion of silicone rubber composite. Eggshells with particle size from 44 to 53 microns were filled into liquid room temperature vulcanizing (RTV) silicone rubber with 0, 5, 15, 25, and 30 part per hundred of rubber (phr). IEC-60587 inclined plane test (IPT) was employed to appraise the surface tracking resistance. Thermogravimetric analysis was conducted to evaluate its thermal stability. Experimental results revealed an improvement of tracking and erosion resistance due to an addition of eggshells particles. Furthermore, the thermal stability of the composites showed variation in the increasing amount of the filler. The filler indicated that higher thermal stability of eggshells influences the heat resistance of the matrix. An increase of the heat resistance resulted in the ability to slow down tracking growth and erosion in the discharge region.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1283 ◽  
Author(s):  
Miao Miao ◽  
Chunyan Wei ◽  
Ying Wang ◽  
Yongfang Qian

To improve the interfacial bonding and thermal stability of graphene oxide (GO)/polypropylene (PP) composite fibers, a composite fiber with PP as the matrix, GO as reinforcement and maleic anhydride-grafted PP (PP-g-MAH) as a compatibilizer was prepared by a simple and efficient melt-blending method. The GO content was 0.0–5.0 wt %. According to the Fourier Transform Infrared (FT-IR) spectroscopy results, the interfacial bonding in the PP/MAH/GO composite fibers was improved. The Dynamic Mechanical Analysis (DMA) results show that the addition of GO resulted in better interfacial adhesion and higher storage modulus (E′). The loss modulus (E′′) of the PP/MAH/GO-x composite fibers increased with increasing amount of added GO, whereas the loss factor (tan δ) decreased. GO and PP-g-MAH were analyzed by Thermogravimetric Analysis (TGA). The thermal stability of the composite fibers was improved compared to PP. Differential Scanning Calorimetry (DSC) analysis showed that the addition of PP-g-MAH to the composite fiber improved the interfacial bonding of GO in the PP matrix. Thus, compatibility between the two components was obtained. Based on the Scanning Electron Microscopy (SEM) results, the PP fibers exhibited relative orientation due to the strong crystalline morphology. The rough section, PP/GO blend fiber exhibits a very clear phase separation morphology due to the incompatibility between the two and the compatibility of GO and PP in PP/MAH/GO-3 composite fiber is improved, resulting in the interface between the two has improved.


Sign in / Sign up

Export Citation Format

Share Document