Effect of in Addition to Zn-5Al Solder on Microstructure and Properties of Solder Joints

2016 ◽  
Vol 723 ◽  
pp. 357-362
Author(s):  
Igor Kostolný ◽  
Roman Koleňák

The effect of In addition to Zn-5Al on the interfacial reaction behaviors and mechanical properties of solder joints were investigated. It was found that addition of In decreasing the melting point of Zn-5Al solder. The segregation of In on grain boundary was observed. CuZn5 and Cu5Zn8 intermetallic phases were observed at joint interface. Segregation of In on grain boundary caused a significant decrease of strength of the Zn-5Al-In solder compared to Zn-5Al. Addition of 1% In to Zn-5Al solder resulted in a reduction of shear strength of 14 MPa. The interfacial microstructure, shear strength and fracture surfaces of Zn-5Al/Cu and Zn-5Al-1In/Cu solder joints were studied.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 518 ◽  
Author(s):  
Congcong Cao ◽  
Keke Zhang ◽  
Baojin Shi ◽  
Huigai Wang ◽  
Di Zhao ◽  
...  

The interface microstructure and shear strength of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal-cycle loading were investigated with scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and physical and chemical tests. The results show that an intermetallic compound (IMC) layer of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints evolved gradually from the scalloped into larger wavy forms with increasing number of thermal cycles. The roughness and average thickness of IMC increased with thermal-cycle loading. However, at longer thermal-cycle loading, the shear strength of the joints was reduced by about 40%. The fracture pathway of solder joints was initiated in the solder seam with ductile fracture mechanism and propagated to the solder seam/IMC layer with ductile-brittle mixed-type fracture mechanism, when the number of thermal cycles increased from 100 to 500 cycles. By adding 0.05 wt.% Ni, the growth of the joint interface IMC could be controlled, and the roughness and average thickness of the interfacial IMC layer reduced. As a result, the shear strength of joints is higher than those without Ni. When compared to joint without Ni, the roughness and average thickness of 0.05 wt.% Ni solder joint interface IMC layer reached the minimum after 500 thermal cycles. The shear strength of that joint was reduced to a minimum of 36.4% of the initial state, to a value of 18.2 MPa.


2021 ◽  
Vol 18 (3) ◽  
pp. 137-144
Author(s):  
Dania Bani Hani ◽  
Raed Al Athamneh ◽  
Mohammed Aljarrah ◽  
Sa’d Hamasha

Abstract SAC-based alloys are one of the most common solder materials that are utilized to provide mechanical support and electrical connection between electronic components and the printed circuit board. Enhancing the mechanical properties of solder joints can improve the life of the components. One of the mechanical properties that define the solder joint structure integrity is the shear strength. The main objective of this study is to assess the shear strength behavior of SAC305 solder joints under different aging conditions. Instron 5948 Micromechanical Tester with a customized fixture is used to perform accelerated shear tests on individual solder joints. The shear strength of SAC305 solder joints with organic solderability preservative (OSP) surface finish is investigated at constant strain rate under different aging times (2, 10, 100, and 1,000 h) and different aging temperatures (50, 100, and 150°C). The nonaged solder joints are examined as well for comparison purposes. Analysis of variance (ANOVA) is accomplished to identify the contribution of each parameter on the shear strength. A general empirical model is developed to estimate the shear strength as a function of aging conditions using the Arrhenius term. Microstructure analysis is performed at different aging conditions using scanning electron microscope (SEM). The results revealed a significant reduction in the shear strength when the aging level is increased. An increase in the precipitates coarsening and intermetallic compound (IMC) layer thickness are observed with increased aging time and temperature.


2011 ◽  
Vol 264-265 ◽  
pp. 1737-1745 ◽  
Author(s):  
M.R. Soltan Mohammadi ◽  
S.F. Kashani Bozorg

Dissimilar joints between CP-Ti and 304stainless steel were produced using diffusion welding technique in the temperature range of 800-950 °C, under a uniaxial pressure of 7 MPa in argon atmosphere. Mechanical assessment of the joints was carried out employing shear testing. The shear strength was found to be a function of joint surface area and volume fraction of brittle intermetallic phases such as σ, FeTi, and Fe2Ti which were detected by scanning electron microscopy and energy dispersive spectroscopy. Increasing the temperature and time of the diffusion welding process increased joint surface area and accelerated elemental diffusion across the joint interface which enhanced the shear strength value. However, as the volume fraction of the brittle intermetallic phases and Kirkendall voids increased at higher temperature and time, the bond shear strength decreased. Optimum shear strength was found to be 168 MPa which related to the joint produced at temperature and time of 900°C and 30 min, respectively.


2020 ◽  
Vol 34 (08) ◽  
pp. 2050064 ◽  
Author(s):  
Meng Zhao ◽  
Liang Zhang ◽  
Lei Sun ◽  
Ming-yue Xiong ◽  
Nan Jiang ◽  
...  

In this study, the effects of Cu nanoparticles on the melting characteristics, wettability, interfacial reaction and mechanical properties of [Formula: see text]–[Formula: see text] [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] composite solders were investigated. Results show that the properties of the composite solder containing Cu nanoparticles were improved effectively. With the addition of Cu nanoparticles, the melting point of [Formula: see text]–[Formula: see text] solder decreased significantly, and the spreading area and the shear strength were increased by 10.3% and 23.2%, respectively. For the performance, the optimal addition of Cu nanoparticles was 0.7%. In addition, the growth of interfacial intermetallic compounds in [Formula: see text]–[Formula: see text] solder joints was inhibited by adding Cu nanoparticles.


2004 ◽  
Vol 261-263 ◽  
pp. 501-506 ◽  
Author(s):  
H.T. Lee ◽  
C.L. Yang ◽  
Ming He Chen ◽  
C.S. Li

The effect of Sb addition on microstructure, intermetallic compound (IMC) and mechanical properties of Sn-Ag solder joints is investigated. The compositions of selected solders are Sn2.58Ag, Sn2.82Ag1.75Sb, Sn2.87Ag4.75Sb and Sn2.7Ag8.78Sb. Experimental results show that most of the added Sb are solved in -Sn matrix, and the rest react with the Ag3Sn to form Ag3(Sb,Sn) phase, which contributes to suppress the coarsening of Ag3Sn phase. SbSn phase can be observed in β-Sn matrix as the Sb addition exceeds 4.75% and remains stable during the thermal storage test. The solder microhardness increases with increasing Sb. And the growth rate of interfacial IMC layer decreases as Sb addition increases. EPMA analysis indicates there are some Sb diffusing into the interfacial IMC layer. Shear strength of solder joints are raised by adding Sb. The shear strength by as-soldered condition are 27.8MPa (0%Sb), 29MPa (1.75%Sb), 30.4MPa (4.75%Sb) and 43.4MPa (8.78%Sb) respectively


2005 ◽  
Vol 2 (3) ◽  
pp. 208-216
Author(s):  
Atsushi Yamaguchi ◽  
Yuhei Yamashita ◽  
Akio Furusawa ◽  
Kazuto Nishida ◽  
Takashi Hojo ◽  
...  

In this paper we investigate the appropriate reflow profiles for simulated CSP solder joints using Sn-Ag-Bi-In solder, which has a lower melting point than Sn-Ag-Cu solder. We have examined the relationship between the interfacial microstructure and mechanical characteristics of Sn-Ag-Bi-In solder at the solder joints compared with those of Sn-Zn-Bi solder. When soldering Sn-3Ag-0.5Cu CSP balls on a Cu/Ni/Au pad, Sn-8Zn-3Bi showed high joint strength at 503 K or higher, whereas Sn-3.5Ag-0.5Bi-8In showed strength at the lower temperature of 493 K. This implies that Sn-Ag-Bi-In solder is more appropriate for soldering at lower temperatures. On the joint interface, a stratified Ni-Sn layer was formed when the Sn-3Ag-0.5Cu CSP ball was soldered on the Cu/Ni/Au phases are pad using Sn-3.5Ag-0.5Bi-8In at 483 ~ 493 K. At 503 K or higher, clumped (Cu,Ni)6Sn5 unevenly formed on the joint interface, resulting in lower strength. These results suggest the appropriate reflow thermal profile for Sn-3.5Ag-0.5Bi-8In solder joints with the Sn-3Ag-0.5Cu CSP ball on the Cu/Ni/Au pads should be in the range of 483 ~ 493 K. Even if the reflow peak temperature is over 493 K, slowing down the cooling speed by 2 K/s can prevent loss of joint strength.


2014 ◽  
Vol 616 ◽  
pp. 275-279
Author(s):  
Qiang Guo Luo ◽  
Xue Shu Hu ◽  
Qiang Shen ◽  
Lian Meng Zhang

LY12/TC4 joints have wide applications in many industrial areas such as aerospace, nuclear and chemical industries. In the present study, TC4 alloy and LY12 alloy with and without aluminum thin film was produced under low temperature of 380 oC. The microstructure and mechanical properties of the joints were investigated. The addition of the Al thin interlayer had largely improved the interfacial microstructure and shear strength of the joints. The average shear strength of LY12/Al/TC4 joints was 64.3 MPa which was 2.5 times larger than the LY12/TC4 joints’ strength. The shear fracture mainly occurred on the interface of LY12 and TC4 from the XRD result of fracture surfaces.


Author(s):  
Quang-Bang Tao ◽  
Lahouari Benabou ◽  
Laurent Vivet ◽  
Ky-Lim Tan ◽  
Jean-Michel Morelle ◽  
...  

This paper makes a focus on the design of a micro-testing machine used for evaluating the mechanical properties of solder alloys. The different parts of the testing device have been developed and assembled in a manner that will facilitate the study of miniature solder joints as used in electronic packaging. A specific procedure for fabricating miniature lap-shear joint specimens is proposed in this work. The tests carried out with the newly developed machine serve to determine the material behavior of solder joints under different controlled loading and temperature conditions. Two new solder alloys, namely SACBiNi and Innolot, are characterized in the study, showing the influence of strain rate and temperature parameters on their respective mechanical responses. In addition, the as-cast and fracture surfaces of the solder joints are observed with a scanning electron microscope to reveal the degradation mechanisms. The SACBiNi solder alloy, which contains less Ni and Sb elements, is found to have smaller shear strength than the Innolot alloy, while its elongation to rupture is significantly improved at the same strain rate level and testing temperature. The highest shear strength is 58.9 MPa and 61.1 MPa under the shear strain rate of 2.0 × 10−2 s−1 and room temperature for the SACBiNi and Innolot solder joints, respectively. In contrast, the lowest shear strength values, 26.6 MPa and 29.5 MPa for SACBiNi and Innolot, respectively, were recorded for the strain rate value of 2.0 × 10−4 s−1 and at temperature of 125℃.


2016 ◽  
Vol 61 (2) ◽  
pp. 997-1001 ◽  
Author(s):  
B. Szwed ◽  
M. Konieczny

AbstractDiffusion brazing was performed between titanium (Grade 2) and stainless steel (X5CrNi18-10) using as a filler a nickel foil at the temperatures of 850, 900, 950 and 1000°C. The microstructure was investigated using light microscopy and scanning electron microscopy equipped with an energy dispersive X-ray system (EDS). The structure of the joints on the titanium side was composed of the eutectoid mixture αTi+Ti2Ni and layers of intermetallic phases Ti2Ni, TiNi and TiNi3. The stainless steel-nickel interface is free from any reaction layer at 850°C, above this temperature thin layer of reaction appears. The microhardness measured across the joints reaches higher values than for titanium and stainless steel, and it achieves value from 260 to 446 HV. The highest shear strength (214 MPa) was achieved for joints brazed at 900°C.


Sign in / Sign up

Export Citation Format

Share Document