scholarly journals Synthesis and Characterization of Cysteine-Capped CdSe Nanoparticles Using an Alternative of Selenium

2019 ◽  
Vol 31 (11) ◽  
pp. 2457-2460
Author(s):  
K.E. Mokubung ◽  
M.J. Moloto ◽  
K.P. Mubiayi ◽  
N. Moloto

Present work reports synthesis of L-cysteine capped CdSe nanoparticles at different temperatures via an aqueous medium, non-toxic and green colloidal route. Cadmium chloride (CdCl2·5H2O) and sodium selenite (Na2SeO3) were used as cadmium and selenium sources respectively. The prepared nanoparticles are characterized by UV-visible absorption and photoluminescence spectroscopy, Fourier transform infrared, X-ray diffraction and transmission electron microscopy. The XRD patterns confirm a cubic phase structure of the prepared nanoparticles at 55, 75 and 95 ºC, respectively. The TEM analysis, optical absorption and photoluminescence spectra shows epitaxial growth of CdSe nanoparticles as the temperature increases with average size diameter of 4.12 ± 0.32, 5.02 ± 0.234 and 5.53 ± 0.321 nm for 55, 75 and 95 ºC, respectively.

2015 ◽  
Vol 29 (01) ◽  
pp. 1450254 ◽  
Author(s):  
M. Shayani Rad ◽  
A. Kompany ◽  
A. Khorsand Zak ◽  
M. E. Abrishami

Pure and silver added zinc oxide nanoparticles ( ZnO -NPs and ZnO : Ag -NPs) were synthesized through a modified sol–gel method. The prepared samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. In the XRD patterns, silver diffracted peaks were also observed for the samples synthesized at different calcination temperatures of 500°C, 700°C, 900°C except 1100°C, in addition to ZnO . TEM images indicated that the average size of ZnO : Ag -NPs increases with the amount of Ag concentration. The PL spectra of the samples revealed that the increase of Ag concentration results in the increase of the visible emission intensity, whereas by increasing the calcination temperature the intensity of visible emission of the samples decreases.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nadana Shanmugam ◽  
Shanmugam Cholan ◽  
Natesan Kannadasan ◽  
Kannadasan Sathishkumar ◽  
G. Viruthagiri

Nanocrystals of ZnS have been synthesized through simple chemical precipitation method using thiourea as sulphur source. The synthesized products were annealed at different temperatures in the range of 200–800∘C. The as-synthesized and annealed samples were characterized by X-ray diffraction (XRD), UV-Visible absorption (UV-Vis), and room temperature photoluminescence (PL) measurements. The morphological features of ZnS annealed at 200 and 500∘C were studied by atomic force microscope (AFM) and transmission electron microscope (TEM) techniques. The phase transformation of ZnS and formation of ZnO were confirmed by thermogravimetric (TG) and differential thermal analysis (DTA) curves.


2019 ◽  
Vol 950 ◽  
pp. 133-137
Author(s):  
Alexander M. Volodin ◽  
Vladimir O. Stoyanovskii ◽  
Vladimir I. Zaykovskii ◽  
Roman M. Kenzhin ◽  
Aleksey A. Vedyagin

Zirconium oxide was obtained via traditional precipitation from a ZrOCl2 solution with ammonia followed by drying at 110 °C. The carbon-coated samples were synthesized by calcination of the pristine zirconia mixed with polyvinylalcohol. The obtained ZrO2@C samples of core-shell structure as well as the reference samples of pristine zirconia were calcined at different temperatures from 500 to 1400 °C. All the materials were examined by a set of physicochemical methods (a low-temperature argon adsorption, transmission electron microscopy, X-ray diffraction analysis, photoluminescence spectroscopy). It was found that the carbon coating prevents the sintering of the oxide nanoparticles, which allows one to maintain the specific surface area, the size of the oxide core and, finally, stabilize its phase composition. Transformation of the cubic phase into monoclinic phase becomes significantly complicated. Thus, 40% of the cubic phase was detected even after calcination of the ZrO2@C sample at 1400 °C. Moreover, the carbon-coated samples treated at elevated temperatures with subsequent removal of the carbon shell were found to possess the highest concentration of the defects related to a presence of the anion vacancies in zirconia.


2007 ◽  
Vol 124-126 ◽  
pp. 1229-1232 ◽  
Author(s):  
Myoung Seok Sung ◽  
Yoon Bok Lee ◽  
Yong Jin Kim ◽  
Yang Do Kim

Cadmium selenide(CdSe) nanoparticles were prepared in the aqueous solution containing isopropyl alcohol by the ultrasonic irradiation at room temperature. The cadmium chloride (CdCl2) and sodium selenosulfate (Na2SeSO3) were used as the cadmium and selenium source, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption spectra and PL spectra were used to characterize the CdSe nanoparticles. XRD analysis revealed the formation of cubic structure CdSe. TEM images showed aggregated CdSe nanoparticles with the size of nanometer scale. Average size of CdSe nanoparticles were about 3.9, 5.0 and 5.1nm with sonication time of 6, 30 and 40 minutes, respectively. The surface emission became less intensive and shifted to red with increasing irradiation time. This paper presents the effects of ultrasonic on the formation of CdSe nanoparticles and its characteristics.


2010 ◽  
Vol 97-101 ◽  
pp. 19-22 ◽  
Author(s):  
Yu Shiang Wu ◽  
Wen Ku Chang ◽  
Min Jou

Zinc stannate Zn2SnO4 (ZTO) nanoparticles were synthesized via a hydrothermal process utilizing sodium carbonate (Na2CO3) as a weak basic mineralizer. The samples were hydrothermally treated at 150, 200, and 250oC for 48 h. The X-ray diffraction (XRD) patterns show that the highly-crystalline ZTO nanostructure could be formed in a well-dispersed manner for the 250°C sample at a particle size of less than 50 nm. As determined from transmission electron microscopy (TEM) results, ZTO nanoparticles are face-centered cubic single crystals agglomerated together. The Raman spectra results showed that the ZTO nanocrystals have a spinel structure. Furthermore, photocatalytic activity was tested with methylene blue (MB) by UV irradiation. The ZTO synthesized by the 2 M Na2CO3 mineralizer at 250oC demonstrated excellent photocatalytic activity. The ZTO treated three different ways had three distinct UV-Visible absorption curves, which directly influences their corresponding photocatalytic activity.


2008 ◽  
Vol 1126 ◽  
Author(s):  
Aravind Suresh ◽  
Joysurya Basu ◽  
Nigel M Sammes ◽  
Barry C Carter ◽  
Benjamin A Wilhite

AbstractBaCe0.25Zr0.60Co0.15O3-x (BCZC) was synthesized via oxalate co-precipitation route. Material was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Catalytic activity of BCZC with respect to hydrogen generation via methanol partial oxidation was determined. Conductivity of the material at different temperatures and under different environments was determined by AC impedance spectroscopy. XRD and TEM results indicated that BCZC was synthesized as a homogeneous cubic phase material. Catalyst tests indicated that BCZC was catalytically active towards hydrogen generation and AC impedance results were positive enough to warrant further electrochemical studies.


2017 ◽  
Vol 727 ◽  
pp. 280-283
Author(s):  
Xiao Ming Fu

Anatase TiO2 particles of about 20 nm in the diameter were successfully synthesized with Ti (SO4)2 as titanium source and stronger ammonia water as precipitant at 240°C for 48 h with pH=5 using the hydrothermal method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS). XRD analysis showed that the phase of the samples was anatase TiO2. TEM analysis confirmed that TiO2 particles of about 50 nm in the diameter were obtained when the pH value was 0.12. With the increasement of the pH value, the size of as-prepared TiO2 particles became remarkably fine. However, with the further increase of the pH value, the size of TiO2 particles was not obvious. TiO2 particles of about 20 nm in the diameter were obtained when the pH value was 5. And UV-VIS results showed that the size of anatase TiO2 nanoparticles, which became small, was propitious to the blue shift of their absorption peak.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Fei Long ◽  
Shuyi Mo ◽  
Yan Zeng ◽  
Shangsen Chi ◽  
Zhengguang Zou

Flower-like Cu2ZnSnS4(CZTS) nanoflakes were synthesized by a facile and fast one-pot solution reaction using copper(II) acetate monohydrate, zinc acetate dihydrate, tin(IV) chloride pentahydrate, and thiourea as starting materials. The as-synthesized samples were characterized by X-ray diffraction (XRD), Raman scattering analysis, field emission scanning electron microscopy (FESEM) equipped with an energy dispersion X-ray spectrometer (EDS), transmission electron microscopy (TEM), and UV-Vis absorption spectra. The XRD patterns shown that the as-synthesized particles were kesterite CZTS and Raman scattering analysis and EDS confirmed that kesterite CZTS was the only phase of product. The results of FESEM and TEM show that the as-synthesized particles were flower-like morphology with the average size of 1~2 μm which are composed of 50 nm thick nanoflakes. UV-Vis absorption spectrum revealed CZTS nanoflakes with a direct band gap of 1.52 eV.


2013 ◽  
Vol 873 ◽  
pp. 164-167
Author(s):  
Xiao Ming Fu

ZrO2 nanoparticles with a diameter range of less than 10 nm are successfully synthesized with zirconium nitrate as zirconium source and stronger ammonia water as precipitant at 210 °C for 48 h via the easy hydrothermal method. The phase, the morphologies and optical absorption properties of the samples have been characterized and analyzed by X-ray diffraction (XRD), field-emission transmission electron microscopy (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS), respectively. XRD analysis shows that the phase of as obtained samples is ZrO2. TEM analysis confirms that using stronger ammonia water as precipitant instead of NaOH and the increase of the reaction temperature are in favor of the synthesis of ZrO2 nanoparticles. And UV-VIS measurements show that ZrO2 nanoparticles have a good optical absorption property.


2016 ◽  
Vol 70 (3) ◽  
Author(s):  
Shiva Salem

AbstractThe autoignition technique using glycine as fuel and related nitrate salts as an oxidiser is able to produce zinc aluminate spinel. The precursors were synthesised with lean and rich fuel at pH of 7.0 and the materials so obtained were calcined at various temperatures ranging from 600-1200°C. The autoignition process of precursors was studied by the simultaneous thermo-gravimetric and differential thermal analyses to determine the ignition mechanism. The calcined powders were characterised by X-ray diffraction, Brunauer-Emmett-Teller technique and transmission electron microscopy. The product contains nano-sized particles with an average size of approximately 20 nm. The XRD patterns showed the formation of ZnO in the powder obtained by the fuel-rich precursor and calcined at 600°C which disappears at 800°C due to solid-state reaction and proper crystallisation after heat treatment. The results presented here can be useful in manufacturing nano and micro-sized ZnAl


Sign in / Sign up

Export Citation Format

Share Document