The Influence of Holmium on the Microstructure and Hardness of Mg-Nd-Gd-Zn-Zr Alloys

2017 ◽  
Vol 740 ◽  
pp. 48-53 ◽  
Author(s):  
Rosli Ahmad ◽  
N.R. Shahizan ◽  
M.B.A. Asmael ◽  
Ashraf M.M. Elaswad

The influence of holmium on the microstructure and hardness of Mg-Nd-Gd-Zn-Zr alloys were investigated. Conventional casting methods are used to produce the alloys. All the results were characterized by optical microscopy, scanning electron microscope (SEM) and the Vickers hardness test to highlight the influence of holmium addition. The addition of 2.0 wt.% holmium leads to the combination of rare earth elements which formed Mg-Zn-Nd-Ho phase. The results have shown the addition of Ho improved the microstructure and hardness of Mg-Nd-Gd-Zn-Zr alloys. By adding grain size of 2.0 wt.% holmium had reduced by 18.43%, while the volume fraction increased by 7.34%. The Vickers hardness value improved 6.18% due to the grain refine and volume fraction precipitates. The 2.0 wt.% holmium addition showed a positive result in microstructure and hardness value.

2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2013 ◽  
Vol 281 ◽  
pp. 475-479
Author(s):  
Bo Wang ◽  
Quan Xi Cao ◽  
Guang Xu ◽  
Sen Tian

1.0at% Nd:YAG polycrystalline ceramics were sintered at 1420°C, 1500°C, 1600°C and 1730°C respectively by different heating rate (1°C/min and 5°C/min). The crystal structures were indexed by X-ray diffractometer (XRD). The microstructure and the grain size of the samples were characterized by scanning electron microscope (SEM). The optical transmittance spectra of the samples were measured using V-570 UV spectrophotometer. The sintering process of Nd:YAG ceramics and the effect of heating rate on the microstructure of samples have been investigated.


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2021 ◽  
Vol 55 (2) ◽  
pp. 231-235
Author(s):  
Mihailo Mrdak ◽  
Darko Bajić ◽  
Darko Veljić ◽  
Marko Rakin

In this paper we will describe the process of the deposition of thick layers of VPS-Ti coating, which is used as a bonding layer for the upper porous Ti coatings on implant substrates. In order to deposit the powder, we used HÖGANÄS Ti powder labelled as AMPERIT 154.086 -63 µm. In order to test the mechanical properties and microstructure of the VPS-Ti coating, the powder was deposited on Č.4171 (X15Cr13 EN10027) steel substrates. Mechanical tests of the microhardness of the coating were performed by the Vickers hardness test method (HV0.3) and tensile strength by measuring the force per unit area (MPa). The microhardness of the coating is 159 HV0.3, which is consistent with the microstructure. The coating was found to have a good bond strength of 68 MPa. The morphology of the powder particles was examined on a scanning electron microscope. The microstructure of the coating, both when deposited and etched, was examined with an optical microscope and a scanning electron microscope. By etching the coating layers, it was found that the structure is homogeneous and that it consists of a mixture of low-temperature and high-temperature titanium phases (α-Ti + β-Ti). Our tests have shown that the deposited layers of Ti coating can be used as a bonding layer for porous Ti coatings in the production of implants.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092571
Author(s):  
Xianrui Zhao ◽  
Ze Yu ◽  
Dunwen Zuo ◽  
Qintao Li ◽  
Mengxian Zhang ◽  
...  

Ti(C,N)-TiB2-Co cermets were in situ synthesized, via reactive hot pressing from the Co-Ti-C-BN system, with a Co content ranging from 6 to 22 wt%. The microstructure, relative density, hardness, and fracture toughness of the sintered compacts was investigated by light microscopy, scanning electron microscopy, ceramic densitometry, and Vickers hardness test. The investigations indicate that during hot pressing (compacting pressure = 30 MPa), when the Co content is 14–22 wt%, the metal binder is extruded. Co and Ti are included in the extrudate, breaking the original ratio and deteriorating the properties of the sintered products. As the Co content increases from 6 wt% to 12 wt%, the porosity increases, and the relative density increases from 97.2% to 99.5%. The fracture toughness increases from 6.1 to 6.8 MPa m1/2. The Vickers hardness first increases from 1897 HV10 to the maximum 1960 HV10 and then decreases slightly to 1945 HV10.


2006 ◽  
Vol 309-311 ◽  
pp. 1215-1218
Author(s):  
Kiyotaka Yamada ◽  
Junji Ikeda ◽  
Giuseppe Pezzotti

The electro-stimulated luminescence spectrum of a rare-earth ion added to zirconia (ZrO2) lattice was investigated with the aim of using it as a sensor for nano-scale stress (fluorescence piezo-spectroscopy) and phase transformation assessments in a field emission scanning electron microscope (FE-SEM). In this paper, the selected rare-earth fluorescent ion Eu, added to ZrO2 as a raw oxide powder (Eu2O3) before sintering (in the amount of 1.0 wt. %). Spectroscopic results indicated that the spectral shift of some fluorescent band of the selected rare-earth ion was sensitive to residual stress and that the electron-stimulated spectra of Eu2O3-doped ZrO2 in its tetragonal and monoclinic polymorphs were different to each other. Based on these findings, the luminescent substance can be useful as a “stress and phase transformation sensor”, in order to clarify the elementary mechanisms behind synthetic ZrO2.


Author(s):  
N. Ollier ◽  
G. Panczer ◽  
B. Champagnon ◽  
P. Jollivet

Abstract Two types of borosilicate leached SON68-type glasses were studied, one doped with uranium and the other with rare-earth element (Nd, Eu). Photoluminescence and cathodoluminescence properties of U doped samples have been correlated to microscopic features of the corroded glass. Nuclear analysis, Electronic Microprobe and Scanning Electron Microscope investigations revealed the heterogeneous composition of the gels with differentiated phases. Enriched U phases (crystallised or not) and phosphorus precipitated phases in rare earth gel have been detected.


2016 ◽  
Vol 22 (1) ◽  
pp. 82-86 ◽  
Author(s):  
Susumu Imashuku ◽  
Kazuaki Wagatsuma ◽  
Jun Kawai

AbstractScanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium–iron–boron (NdFeB) and samarium–cobalt (Sm–Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm–Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.


2021 ◽  
Vol 1 (1) ◽  
pp. 355-362
Author(s):  
Riria Zendy Mirahati ◽  
Yasmina Amalia ◽  
Mochamad Juliyanto ◽  
Lintang Larasati Adi Putri

Galena mineral preparation was carried out for mineral characterization. The mineral characterization carried out included XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence), SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-Ray). The preparation of galena minerals begins with the process of reducing the grain size including crushing and grinding. The results of crushing and grinding are then separated based on grain size using a sieve or siever to get a grain size of -200 mesh. The grinding process using a rod mill needs to be timed, so that the results are not too fine which is causing the recovery in the mineral concentration process to be low.


Sign in / Sign up

Export Citation Format

Share Document