Sintering Process of Nd:YAG Transparent Ceramic

2013 ◽  
Vol 281 ◽  
pp. 475-479
Author(s):  
Bo Wang ◽  
Quan Xi Cao ◽  
Guang Xu ◽  
Sen Tian

1.0at% Nd:YAG polycrystalline ceramics were sintered at 1420°C, 1500°C, 1600°C and 1730°C respectively by different heating rate (1°C/min and 5°C/min). The crystal structures were indexed by X-ray diffractometer (XRD). The microstructure and the grain size of the samples were characterized by scanning electron microscope (SEM). The optical transmittance spectra of the samples were measured using V-570 UV spectrophotometer. The sintering process of Nd:YAG ceramics and the effect of heating rate on the microstructure of samples have been investigated.

2012 ◽  
Vol 535-537 ◽  
pp. 836-839 ◽  
Author(s):  
Bo Wang ◽  
Quan Xi Cao

1.0at% Nd:YAG polycrystalline ceramics were fabricated with different sintering adds by solid-state reaction and vacuum sintering method. The optical transmittance spectra of the samples were measured using V-570 UV spectrophotometer. The microstructure and the grain size of the samples were characterized by Scanning electron microscope. It is found that the sample with 0.5wt% SiO2and 0.5wt% MgO had the best transmittance, the most densification and uniform grain size, and the grain size decreased with the increasing MgO. Effects of MgO on the microstructure of YAG and its action mechanism have been investigated.


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2021 ◽  
Vol 1 (1) ◽  
pp. 355-362
Author(s):  
Riria Zendy Mirahati ◽  
Yasmina Amalia ◽  
Mochamad Juliyanto ◽  
Lintang Larasati Adi Putri

Galena mineral preparation was carried out for mineral characterization. The mineral characterization carried out included XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence), SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-Ray). The preparation of galena minerals begins with the process of reducing the grain size including crushing and grinding. The results of crushing and grinding are then separated based on grain size using a sieve or siever to get a grain size of -200 mesh. The grinding process using a rod mill needs to be timed, so that the results are not too fine which is causing the recovery in the mineral concentration process to be low.


2008 ◽  
Vol 55-57 ◽  
pp. 145-148
Author(s):  
C. Puchmark ◽  
P. Tipparak

Zirconium titanate (ZrTiO4): ZT powders were prepared by solid-state mixed oxide method. The mixed powder was calcined at various temperatures for 3 h ranging from 1100 to 1400 oC with a heating rate of 5 oC/min. X-ray diffraction analysis of the powders was performed using a diffractometer with Cu Ka. Pyrochlore phase was observed for calcinations below 1300 oC. In general, the strongest reflections apparent in patterns could be matched with a JCPDS file number 74-1504. The optimum calcination temperature for the formation of ZrTiO4 phase was found to be about 1300 oC for 3 h with heating rate of 5 oC/min. The microstructures of calcined powders were examined using scanning electron microscope (SEM). The particle size of powder increased with increasing calcination temperature. The ZT ceramics sintered at 1450, 1500, 1550 and 1600 oC for 4 h with heating rate of 5 oC/min, were checked for phase formation by X-ray diffraction. The density of sintered samples was measured by Archimedes method. The microstructures of sintered samples were examined using scanning electron microscope (SEM). The average grain sizes were checked by linear interception method. It was found that, the samples sintered at 1450 and 1500 oC gave rise to high purity ZT ceramics and the peaks matched well with ZrTiO4 phase in a JCPDS file number 74-1504. Unknown phases were found in ZT ceramics sintered at 1550 and 1600 oC. The value of density was in the range of 4.32 - 4.92 g/cm3 or 84.26 - 96.12 % of the ZT theoretical density. The densification of ZT ceramics decreased with increasing sintering temperature. The ZT ceramics sintered at 1450 and 1500 oC showed the average grain size of 8.55 and 12.55 µm, respectively. At sintering temperature 1550 and 1600 oC, morphology of grains changed to plate like crystals of second phases.


2011 ◽  
Vol 121-126 ◽  
pp. 2487-2491
Author(s):  
Wei Wang ◽  
Yong Xian Liu ◽  
Jerry Y.H. Fuh ◽  
Peng Jia Wang

In this paper, the synthesis and investigation of the glass in the Al2O3- ZrO2-SiO2 system, to be used in dental field. The mechanism of powder–state becoming a solid state block during the laser sintering process was disclosed by scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis on powders and sintered samples. The optimal parameters of laser and can be obtained by the study. The results allowed us to affirm that the characteristics of this glass, in comparison with the tooth hard substances and other commonly employed inorganic dental materials, recommend it for further utilization in the dental field.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4045
Author(s):  
Rafał Mech ◽  
Jolanta Gąsiorek ◽  
Amadeusz Łaszcz ◽  
Bartosz Babiarczuk

The paper presents a comparison of the results of the corrosion resistance for three Fe-B-Co-Si-based newly developed alloys with the addition of Nb and V. The corrosion performance differences and microstructure variations were systematically studied using scanning electron microscope, electric corrosion equipment, X-ray diffractometer, and differential calorimeter. It has been shown that each alloying addition increased the corrosion resistance. The highest corrosion resistance obtained by potentiodynamic polarization was found for the alloy with both Nb and V addons (Fe57Co10B20Si5Nb4V4) and lowest in the case of the basic four-element Fe62Co15B14Si9 material. This shows that the proper choice of additions is of significant influence on the final performance of the alloy and allows tailoring of the material for specific applications.


Sign in / Sign up

Export Citation Format

Share Document