An Investigation on the Adsorbent Material of Fly Ash

2017 ◽  
Vol 753 ◽  
pp. 254-258 ◽  
Author(s):  
Dan Fu

In this paper, the properties of fly ash were investigated. The particle size distribution, the fourier transform infrared spectroscopy (FTIR), the morphology, the surface area, pore volume, average pore diameter and the modification methods of fly ash were examined. The study indicated that the particle size of fly ash was about 0.2 µm, the particle shape was irregular. FTIR spectrums of fly ash modified were basically the same and the functional groups of fly ash were rarely. SEM of fly ash showed that the particles were similar to lamellar structure and the particle shape was irregular. The BET specific surface area of fly ash modified by H2O2 was 41.63 m2 /g. The fly ash of modified by H2O2 had better adsorption performance than other modified methods. The modification can effectively improve the adsorption performance of fly ash. The result indicated that the fly ash as adsorbent for wastewater treatment was feasible.

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Huiqun Niu ◽  
Hongying Yang ◽  
Linlin Tong

In this paper, the structures of element carbon and humic acid extracted from carbonaceous gold concentrate were characterized employing a variety of analytical methods. The extracted amounts of ECE (elemental carbon extract) and HAE (humic acid extract) were 14.84–38.50 and 11.55–28.05 mg g−1, respectively. SEM and porosity analysis indicated that ECE occurred mostly as irregular blocky particles with a mesoporous surface with the average pore diameter being 31.42 nm. The particle size of ECE was mainly ranged from 5.5 to 42 μm and the specific surface area was 20.35 m2 g−1. The physicochemical features and structure of ECE were close to activated carbon, and the crystallinity was slightly lower than graphite. The particle size distribution of HAE varied from 40 to 400 nm with the specific surface area of 42.84 m2 g−1, whereas the average pore diameter of HAE was 2.97 nm. FTIR and UV–VIS analyses indicated that HAE was a complex organic compound containing the enrichment of oxygen-containing structure. The results showed that the adsorption amounts of ECE and HAE under the acidic conditions were 470.46 and 357.60 mg g−1, respectively. In an alkaline environment, the amount of ECE was 449.02 mg g−1 and the value of HAE was 294.72 mg g−1. ECE mainly utilized the outer surface and mesoporous structure to adsorb gold, while the functional groups’ complexation or surface site adsorption was the leading approach for HAE to adsorb gold.


2014 ◽  
Vol 609-610 ◽  
pp. 472-478
Author(s):  
Wei Ding ◽  
Ding Cong Wang ◽  
De Zhi Zhao ◽  
Ming Ke

A series of macropore host-guest catalysts were prepared by third nanoassembly technique. nanoassembly support had a pore volume of 1.32cm3 /g,a specific surface area of 220m2/g, average pore diameter of 27.3nm, the most probable pore diameter of 40nm, a low stacking density of 0.34g/cm3. The results of the XRD and TEM showed that the part of pore was blocked with increasing the amount of active metal. But the aggregation phenomenon was improved by adding uniformly co-impregnant, and the amount of active metal was up to 40%. The lamellar structure of sulfided state metal was formed which the length were between 8 nm to 10 nm and layer were 3~9. Hydrogenation performance of the different catalysts has been evaluated. The removal rates of desulfurization, denitrification, residual carbon and demetalization for hydrotreating in one gram active metal per 100mL volume for FB30 were as 2.0, 2.6, 2.0 and 2.5 times as FC, respectively. The results explained that the macropore host-guest catalyst had higher activity for hydrotreating residue.


2021 ◽  
Vol 8 (5) ◽  
pp. 202271
Author(s):  
Shengwei Wang ◽  
Xijian Li ◽  
Haiteng Xue ◽  
Zhonghui Shen ◽  
Liuyu Chen

The migration law of shale gas has a significant influence on the seepage characteristics of shale, and the flow of the gas is closely related to the pore structure. To explore the influence of shale pore parameters on permeability in different diffusion zones, the pore structure of the shale in the Niutitang Formation in Guizhou, China, was analysed based on liquid nitrogen adsorption experiments and nuclear magnetic resonance experiments. The relationship among fractal dimension, organic carbon content (TOC) and BET-specific surface area was analysed based on the fractal dimension of shale pores calculated using the Frenkel–Halsey–Hill model. Shale permeability was calculated using the Knudsen number ( Kn ) and permeability equation, and the influence of the fractal dimension and porosity in different diffusion zones on shale permeability was analysed. Previous studies have shown that: (i) the pores of shale in the Niutitang Formation, Guizhou are mainly distributed within 1–100 nm, with a small total pore volume per unit mass, average pore diameter, large BET specific surface area and porosity; (ii) fractal dimension has a negative correlation with average pore diameter and TOC content and a quadratic relationship with BET specific surface area; and (iii) permeability has a positive correlation with Kn , porosity and fractal dimension. In the transitional diffusion zone, fractal dimension and porosity have a significant impact on permeability. In the Knudsen diffusion zone, porosity has no obvious effect on permeability. The methodologies and results presented will enable more accurate characterization of the complexity of pore structures of porous media and allow further understanding of the seepage law of shale gas.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2006 ◽  
Vol 951 ◽  
Author(s):  
Sorapong Pavasupree ◽  
Supachai Ngamsinlapasathian ◽  
Yoshikazu Suzuki ◽  
Susumu Yoshikawa

ABSTRACTNanorods/nanoparticles TiO2 with mesoporous structure were synthesized by hydrothermal method at 150 °C for 20 h. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. The nanorods had diameter about 10-20 nm and the lengths of 100-200 nm, the nanoparticles had diameter about 5-10 nm. The prepared material had average pore diameter about 7-12 nm. The BET surface area and pore volume of the sample are about 203 m2/g and 0.655 cm3/g, respectively. The nanorods/nanoparticles TiO2 with mesoporous structure showed higher photocatalytic activity (I3− concentration) than the nanorods TiO2, nanofibers TiO2, mesoporous TiO2, and commercial TiO2 (ST-01, P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using nanorods/nanoparticles TiO2 with mesoporous structure was about 7.12 % with Jsc of 13.97 mA/cm2, Voc of 0.73 V and ff of 0.70; while η of the cell using P-25 reached 5.82 % with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649.


2021 ◽  
Vol 15 (1) ◽  
pp. 75-82
Author(s):  
Mingzi Xu ◽  
Changdong Sheng

The present work aims to develop a simple model for describing the particle size distribution (PSD) of residual fly ash from pulverized biomass combustion. The residual ash formation was modelled considering the mechanism of fragmentation and coalescence. The influences of particle shape and stochastic fragmentation on model description of the PSD of the fly ash were investigated. The results showed that biomass particle shape has a great influence on the model prediction, and a larger fragmentation number is required for cylindrical particles than that for spherical particles to get the same PSD of fly ash, and the fragment number of the particles increases with the shape factor increasing. For pulverized biomass with a wide size distribution, the model predicted ash PSD considering the stochastic fragmentation is very similar to that assuming uniform fragmentation. It implies that the simple model assuming uniform fragmentation is applicable for predicting fly ash size distribution in practical processes where biomass particles have a wide range of sizes. For the fuel with a narrower initial PSD, the stochastic fragmentation model generally predicts a coarser PSD of the residual ash than assuming uniform fragmentation. It means the stochastic fragmentation is of great influence to be considered for accurate description of ash formation from the fuel with a narrow PSD.


2021 ◽  
Vol 8 (1) ◽  
pp. 20218111
Author(s):  
V. A. Snegirev ◽  
V. M. Yurk

The study examines the technology of processing fly ash from Troitskaya power plant for the production of zeolite. The paper presents the results of laboratory studies evaluating the suitability of fly ash from Troitskaya power plant for the production of zeolites and the development of the zeolite production process. Fly ash contains a small amount of heavy metals that can complicate processing, but contains a large amount of silicon oxide. The technology consists of high-temperature alkaline activation of fly ash and hydrochemical synthesis. The resulting powder has a specific surface area of 89.7 m2/g, determined by the BET method, and an average pore diameter of 0.345 μm. The static exchange capacity was 220 mg/g.


2019 ◽  
Vol 58 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Yong-Sik Chu ◽  
Batmunkh Davaabal ◽  
Dae-Sung Kim ◽  
Sung-Kwan Seo ◽  
Yoo Kim ◽  
...  

Abstract The effect of two different milling devices, namely attrition mill versus vibration mill, on the reactivity of fly ash was studied. High calcium fly ash from 4th Thermal power station of Ulaanbaatar (Mongolia) was used for the experiments. The raw and processed samples were characterized by XRD, SEM, Particle size distribution, BET, Blaine surface area and density measurements. The efficiency of 1 hour milling was evaluated with the Blaine surface area set to be more than 5000 cm2/g. The physical and chemical properties of the attrition milled fly ash changed not much compared to the vibration milled samples. For example the d50 particle size became reduced from 29 µm to 6 µm by attrition milling and in vibration milled fly ash it was reduced to 7 µm. The density increased from 2.44 g/cm3 of raw fly ash to 2.84 g/cm3 and 2.79 g/cm3 in attrition and vibration milled samples, respectively. Mechanical milling revealed not only a particle size reduction but also the formation of a denser microstructure. As a result the vibration milled fly ash showed a weaker interaction with the alkaline solution (8 M NaOH used here) compared to the attrition milled fly ash. Consequently, compressive strength of the binder prepared using the attrition milled fly ash was higher, 61 MPa, while for vibration milled fly ash it was 49 MPa. For comparison unmilled fly ash, it was 21 MPa.


2004 ◽  
Vol 19 (9) ◽  
pp. 2687-2693 ◽  
Author(s):  
Lay Gaik Teoh ◽  
Jiann Shieh ◽  
Wei Hao Lai ◽  
Min Hsiung Hon

The effects of mesoporous structure on grain growth were investigated in this study. The synthesis was accomplished using block copolymer as the organic template and tungsten chloride as the inorganic precursor. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, x-ray diffractometry (XRD), transmission electron microscopy, and N2 adsorption/desorption isotherms were used to characterize the microstructures obtained for different temperatures. TGA and XRD analyses demonstrate that copolymers were expelled at 150–250 °C, and mesoporous structure was stable up to 350 °C. The pore diameter and the surface area evaluated from the Barrett-Joyner-Halenda model and Brunauer–Emmett–Teller method indicated that the average pore diameter is 4.11 nm and specific surface area is 191.5 m2/g for 250 °C calcination. Arrhenius equation used to calculate the activation energy for grain growth demonstrates that the activation energy for grain growth was about 38.1 kJ/mol before mesostructure collapse and 11.3 kJ/mol after collapse. These results show evidence of two different mechanisms governing the process of grain growth. The presence of the pore can be related to the obstacle for grain growth.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


Sign in / Sign up

Export Citation Format

Share Document