Electron-Ion-Plasma Doping of Aluminum Surface with Copper and Titanium - A Comparative Analysis of the Formed Structure and Properties

2018 ◽  
Vol 781 ◽  
pp. 76-81
Author(s):  
Yurii Ivanov ◽  
Anatolii A. Klopotov ◽  
Aleksandr I. Potekaev ◽  
Olga V. Krysina ◽  
Pavel Moskvin ◽  
...  

Deposition of a titanium or a copper film onto the surface of commercially pure A7 aluminum and irradiation of the “film/substrate” system with an intense pulsed electron beam are carried out in a single vacuum cycle. Formation of a surface doped layer with a thickness of (20-30) μm is revealed. It is shown that the modified layer has a multiphase structure of a cellular rapid solidification of the submicron-nanosized range. Irradiation parameters are determined. It is established that the developed modification method allows forming a surface doped layer with the microhardness more than 4 times (Ti-Al alloy) or more than 3 times (Cu-Al alloy) greater than the microhardness of A7 aluminum; the wear resistance of the surface alloy Ti-Al exceeds the wear resistance of the initial aluminum in ≈2.4 times; doping of aluminum with copper is accompanied with an increase in the wear resistance of the material in ≈1.5 times.

2018 ◽  
Vol 143 ◽  
pp. 03007 ◽  
Author(s):  
Olga Krysina ◽  
Elizaveta Petrikova ◽  
Vladimir Shugurov ◽  
Pavel Moskvin ◽  
Yurii Ivanov

The paper focuses on detection and structural-phase justification of the modes of combined electron-ion plasma treatment of commercially pure A7 grade aluminum carried out in a single vacuum cycle and enabling to enhance mechanical (microhardness) and tribological (wear resistance) properties of the material. Commercially pure A7 grade aluminum underwent combined surface treatment, including deposition of titanium coating by means of vacuum-arc technique and further mixing of the coating/substrate system by intense pulsed electron beam. The varied parameters were energy density of the electron beam (10, 15, 20) J/cm2 and the number of impact pulses (3-100); the thickness of titanium coating was 0.5 μm. Electron-ion plasma treatment of aluminum was carried out in a single vacuum cycle. Optical and scanning electron microscope investigations, measuring of microhardness and tribological tests allowed defining the modes when hardness and wear resistance of the modified surface layer increases manifold in comparison to the initial properties of commercially pure aluminum.


2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


2000 ◽  
Vol 125 (1-3) ◽  
pp. 251-256 ◽  
Author(s):  
Y.F. Ivanov ◽  
V.P. Rotshtein ◽  
D.I. Proskurovsky ◽  
P.V. Orlov ◽  
K.N. Polestchenko ◽  
...  

2021 ◽  
Vol 1039 ◽  
pp. 201-208
Author(s):  
Ruaa A. Salman ◽  
Naser K. Zedin

This research is devoted to study the effect of addition (2%) TiO2 with different weight percent of fly ash particulate (0, 2, 4, 6%) to 2024 Al alloy on the wear behavior and hardness. The alloy was fabricated by the liquid metallurgy method. The results founds that the wear rate decreased from 0.55 with 0% fly ash to 0.18 at addition percentage of 6% fly ash. Also, the results reveal increasing the samples wear rate with increasing the load and loaded time. The rate of wear was decreased with increasing the sliding speed. Also, the values of hardness increased from 120VH to 160VH with rising the fly ash from 0% to 6%. Keywords: Fly Ash addition, TiO2, 2024 Al Alloy, Wear Resistance, Hardness.


2010 ◽  
Vol 154-155 ◽  
pp. 1170-1177
Author(s):  
Yuan Fang Chen ◽  
Xiao Dong Peng ◽  
Jian Jun Hu ◽  
Hong Bin Xu ◽  
Chan Hao

Surface modification of 40Cr steel by high current pulsed electron beam has been investigated . The pulsed times of HCPEB was changed from 1 to 25 to prepare different specimens. Surface microstructures and section microstructures after HCPEB irradiation were detected by using metallurgical microscope, SEM and X-ray diffractometer. It is shown that crater defects were found on the surface after the irradiation of HCPEB and the density of craters will decrease with increasing pulses times. When treated by 27Kev accelerating voltage, with increasing pulse times, the particles located in surface layer were obviously refined .The surface roughness, hardness, wear properties and corrosion resistance were analyzed after irradiation of HCPEB. The wear resistance and corrosion resistance were obviously enhanced after 10 pulses treatment.


Author(s):  
Е.В. Фомин ◽  
А.Д. Бондарев ◽  
И.П. Сошников ◽  
N.B. Bercu ◽  
L. Giraudet ◽  
...  

The paper presents the results of the synthesis of thin aluminum nitride films by reactive ion-plasma sputtering and the study of their properties with the aim of using as the protective coatings for the high-power AlxGa1-xAs/GaAs semiconductor laser heterostructures. EDS studies and ellipsometry showed that at a residual pressure in the chamber of the order of ~10-5 Torr, a layer of aluminum oxynitride is formed in the films. In this case, the film-substrate heterointerface can undergo oxidation. However, AlN films with a thickness of the order of 100 nm grown in a pure nitrogen medium with a residual pressure of ~10-7 Torr apparently do not contain oxygen, and can reliably prevent its penetration into the heterointerface region. Potentially, they can serve as effective protection for oxidation sensitive heterostructures.


Sign in / Sign up

Export Citation Format

Share Document