Post-Cracking B-FRCM Strengthening of a Traditional Anti-Seismic Construction Technique (Casa baraccata): Extensive Experimental Investigations

2019 ◽  
Vol 817 ◽  
pp. 634-641
Author(s):  
Simone Tiberti ◽  
Carmelo Scuro ◽  
Saverio Porzio ◽  
Gabriele Milani ◽  
Renato S. Olivito

In the framework of the Mediterranean cultural heritage, the term “fictile tubule” identifies a peculiar type of brick, characterized by a cylindrical shape and a hollow core. Its unique geometry and characteristics rank it among the first hollow clay bricks in history. The large-scale production of fictile tubules allegedly began in the Roman provinces of Northern Africa during the 2nd Century A.D., where they were employed for building vaulted and domed structures without the need of centrings. Over the following Centuries, the construction technique of fictile tubules embedded in mortar was constantly refined and improved. This led to an extensive use of such technique in several buildings - as part of different structural elements (vaults, domes, floors, walls) - all over the Mediterranean area, and especially in Southern Italy. In 1909, after the disastrous earthquake in Messina and Reggio Calabria, Calabrian engineer Pasquale Frezza devised and patented an anti-seismic construction system which evolved the technology of casa baraccata. Frezza’s take on this traditional Calabrian way of erecting buildings involved the use of a specific type of fictile tubule, named carosello, alternated with common bricks in masonry walls, which are then encased in a timber frame. This paper presents an investigation on the structural behavior of Frezza’s evolution of casa baraccata, aimed at its possible revival as a relevant anti-seismic construction technique. Two specimen walls with dimensions equal to 60×60×15 cm3 are built according to Frezza’s patent and experimentally examined through a diagonal compressive test at the Civil Engineering Laboratory of University of Calabria. For the first specimen wall the test is carried out until failure to identify the collapse load. Conversely, for the second specimen wall the test is halted immediately after the formation of the first vertical cracks. The specimen is subsequently repaired using B-FRCM (Basalt Fiber-Reinforced Cementitious Matrix) as reinforcement, and the diagonal compressive test is repeated, this time until failure. The results in terms of collapse load and shear strength for both specimens are then compared and critically discussed, highlighting the increased load-bearing capacity of the wall built according to Frezza’s patent and reinforced with B-FRCM.

1997 ◽  
Vol 40 (4) ◽  
Author(s):  
M. Viti ◽  
D. Albarello ◽  
E. Mantovani

Seismological investigations have provided an estimate of the gross structnral features of the crust/upper mantle system in the Mediterranean area. However, this information is only representative of the short-term me- chanical behaviour of rocks and cannot help us to understand slow deformations and related tectonic processes on the geological time scale. In this work strength envelopes for several major structural provinces of the Mediterranean area have been tentatively derived from seismological stratification and heat flow data, on the assumption of constant and uniforrn strain rate (10-16 S-1), wet rocks and conductive geotherm. It is also shown how the uncertainties in the reconstruction of thermal profiles can influence the main rheological prop- erties of the lithosphere, as thickness and total strength. The thickest (50-70 km) and strongest mechanical lithospheres correspond to the coldest zones (with heat flow lower than or equal to 50 mW m-2), i.e., the Io- nian and Levantine mesozoic basins, the Adriatic and Eurasian foreland zones and NW Greece. Heat flows larger than 65 mW m-2, generally observed in extensional zones (Tyrrhenian, Sicily Channel, Northern Aegean, Macedonia and Western Turkey), are mostly related to mechanical lithospheres thinner than 20 km. The characteristics of strength envelopes, and in particular the presence of soft layers in the crust, suggest a reasonable interpretation of some large-scale features which characterize the tectonic evolution of the Central- Eastem Mediterranean.


Author(s):  
Gerassimos Papadopoulos

According to Imamura (1937: 123), the term tunami or tsunami is a combination of the Japanese word tu (meaning a port) and nami (a long wave), hence long wave in a harbour. He goes on to say that the meaning might also be defined as a seismic sea-wave since most tsunamis are produced by a sudden dip-slip motion along faults during major earthquakes. Other submarine or coastal phenomena, however, such as volcanic eruptions, landslides, and gas escapes, are also known to cause tsunamis. According to Van Dorn (1968), ‘tsunami’ is the Japanese name for the gravity wave system formed in the sea following any large-scale, short-duration disturbance of the free surface. Tsunamis fall under the general classification of long waves. The length of the waves is of the order of several tens or hundreds of kilometres and tsunamis usually consist of a series of waves that approach the coast with periods ranging from 5 to 90 minutes (Murty 1977). Some commonly used terms that describe tsunami wave propagation and inundation are illustrated in Figure 17.2. Because of the active lithospheric plate convergence, the Mediterranean area is geodynamically characterized by significant volcanism and high seismicity as discussed in Chapters 15 and 16 respectively. Furthermore, coastal and submarine landslides are quite frequent and this is partly in response to the steep terrain of much of the basin (Papadopoulos et al. 2007a). Tsunamis are among the most remarkable phenomena associated with earthquakes, volcanic eruptions, and landslides in the Mediterranean basin. Until recently, however, it was widely believed that tsunamis either did not occur in the Mediterranean Sea, or they were so rare that they did not pose a threat to coastal communities. Catastrophic tsunamis are more frequent on Pacific Ocean coasts where both local and transoceanic tsunamis have been documented (Soloviev 1970). In contrast, large tsunami recurrence in the Mediterranean is of the order of several decades and the memory of tsunamis is short-lived. Most people are only aware of the extreme Late Bronge Age tsunami that has been linked to the powerful eruption of Thera volcano in the south Aegean Sea (Marinatos 1939; Chapter 15).


2020 ◽  
Vol 80 (1) ◽  
pp. 19-42
Author(s):  
C Merkenschlager ◽  
E Hertig

Within the context of analyzing daily heavy precipitation events in the Mediterranean under enhanced greenhouse gas forcing in the 21st century, a new method considering non-stationarities in the relationships of large-scale circulation predictors and regional precipitation extremes was applied. The Mediterranean area was split into up to 22 precipitation regions, and analyses were performed separately for 3 different seasons (autumn, winter and spring) and 3 different quantiles (90th, 95th and 99th). Estimations are based on a three-step censored quantile regression. Future estimations are performed by means of 3 model runs of the Max Planck Institute Earth System Model with Low Resolution (MPI-ESM-LR) for representative concentration pathways (RCPs) 4.5 and 8.5. Overall, the Mediterranean is mainly characterized by decreasing quantile values. Especially in the regions in the southeast, declines are significant, with up to 71.7% (-1.65 mm) in the Levante region (autumn) and over 16 mm (-38.2%) on Crete (winter). Increased precipitation quantiles were only assessed for a more or less extended region in the northern parts of the Central Mediterranean (winter and spring), for the northeastern coast of the Iberian Peninsula (autumn) and for northern Spain (spring). Overall, analyses showed that non-stationarities seriously affect precipitation behavior in most parts of the Mediterranean. Results indicated that 2 different regimes (western and eastern) inducing non-stationarities are predominant in the Mediterranean area. In autumn (winter), the western (eastern) regime is limited to the Iberian Peninsula (Levante), whereas in spring, the area of influence of both regimes is of equal size.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1353 ◽  
Author(s):  
Onofrio Davide Palmitessa ◽  
Paolo Paciello ◽  
Pietro Santamaria

Supplemental light (SL) is a technique used to increase horticulture yield, especially in northern countries, where the Daily Light Integral (DLI) is a limiting factor during fall and winter, and which could also be used to obtain higher tomato yield at the Mediterranean latitude. In this study, three tomato hybrid (F1) cultivars were grown for year-round production in a commercial semi-closed glasshouse in Southern Italy: two of the cherry fruit-type (‘Juanita’ and ‘Sorentyno’) and one mini plum fruit-type (‘Solarino’). From 120 to 243 days after transplant, light-emitting diode (LED) toplights were used as SL, with a photoperiod of 18 h. The main climatic parameters inside and outside the glasshouse were recorded, and tomato plants’ development and yield were examined. Plants grown with LEDs had longer stems as compared to control treatment (9.53 vs. 8.79 m), a higher stem thickness and yielded more trusses. On average, the yield was 21.7% higher with LEDs. ‘Sorentyno’ was the cultivar with the highest cumulated productivity when it was grown under SL. However, the cultivar with best light use efficiency under LEDs was ‘Solarino’. Therefore, supplemental LED from mid-December until March enhanced tomato growth and yield, opening a favorable scenario for large-scale application of this technology also in the Mediterranean area.


2014 ◽  
Vol 89 ◽  
pp. 139-144 ◽  
Author(s):  
Claudio Mingazzini ◽  
Matteo Scafè ◽  
Daniele Caretti ◽  
Daniele Nanni ◽  
Emiliano Burresi ◽  
...  

In this work, the optimisation of basalt fiber CFCCs (Continuous Fiber Ceramic Composites) production is presented, focusing on the development of a silicon-oxycarbide matrix by PIP (Polymer Impregnation Pyrolysis). The use of low cost poly-siloxanes and basalt fibers is particularly promising for transports and constructions, where thermostructural CFCCs would be interesting for vehicle weight reduction and fire-resistant panels, but only on the condition that production costs are kept really low. The basalt/SiCO composites are suitable for mechanical applications up to 600°C and stand up temperatures up to 1200°C, also in oxidative environments. The key parameters to keep the production costs low are the furnace and moulds type, being steel probably the best material for both, since it withstands the pyrolysis temperature and can be easily cleaned, by oxidation, from any residue. Regarding the pyrolysis environment, two conditions were compared, nitrogen flow and vacuum, being perhaps the vacuum procedure less expensive and so potentially more appealing for a large scale production. The microstructure and the thermomechanical characteristics of the obtained composites were compared, Another key parameter in determining the production costs is the number of PIP steps, which has to be minimised. The present results support the conclusion that one PIP step in nitrogen or two PIP steps in vacuum can provide CFCC with satisfactory mechanical characteristics for thermomechanical applications in oxidative environments.


2010 ◽  
Vol 1 (1) ◽  
pp. 11 ◽  
Author(s):  
A. Bergamasco ◽  
P. Malanotte-Rizzoli

The Mediterranean Sea is an enclosed basin composed of two similar basins and different sub-basins. It is a concentration basin, where evaporation exceeds precipitation. In the surface layer there is an inflow of Atlantic water which is modified along its path to the Eastern basin. This transformation occurs through surface heat loss and evaporation specifically in the Levantine basin. The Mediterranean is furthermore the site of water mass formation processes, which can be studied experimentally because of their easy accessibility. There are two main reasons why the Mediterranean is important. The first one is the impact of the Mediterranean on the global thermohaline circulation, the second reason is that the Mediterranean basin can be considered as Laborartory for investigating processes occurring on the global scale of the world ocean. In this paper we want to provide a short historical review of the evolving knowledge of the Mediterranean circulation that has emerged from experimental investigations over the last decades. We start by describing the old picture of the basin circulation which had stationary, smooth large scale patterns. Then we show the major experiments that led to the discovery of the sub-basin scale circulation and its mesoscale features. We conclude with the dynamical discovery of EMT in the 1990s and the most exciting ongoing new research programmes.


2021 ◽  
Vol 15 (1) ◽  
pp. 66-74
Author(s):  
Roberta Passafiume ◽  
Ilenia Tinebra ◽  
Giuseppe Sortino ◽  
Eristanna Palazzolo ◽  
Vittorio Farina

Aims: The aim of this study is to evaluate the qualitative characteristics of the new clones according to the Mediterranean hillside growing environment and, at the same time, to highlight the qualitative peculiarities of the old varieties in order to avoid genetic loss. Introduction: Several apple varieties are constantly selected for improved quality traits and introduced for cultivation and marketing in addition to a few traditional and affirmed varieties. On the other side, local genotype and ancient varieties are still valorised due to the request of a niche market. Methods: We have studied the physico-chemical quality and the sensory traits of the fruit obtained in this particular environment. Results: Our study reveals a qualitative response to the environment in a genotype-dependent manner. As expected, the physico-chemical characteristics favour the new clones. Conclusion: Both old varieties and new clones of apple fruit, grown in the Mediterranean area, turned out to be of high quality. Nevertheless, results revealed the better characteristics of new clones for commercialization in large-scale supply chain.


Sign in / Sign up

Export Citation Format

Share Document