Development of Heat Treatment Mode with Quenching in Different Quenching Environments for the Casing Pipe in Order to Obtain the Required Mechanical Properties

2020 ◽  
Vol 836 ◽  
pp. 41-45
Author(s):  
S.N. Dzhabbarov ◽  
E.I. Pryakhin

Development of an optimal technology of heat treatment for blanks of the casing pipe made of steel 40H (GOST 4543) is used in the oil and gas industry for casing. It is accompanied by quenching in various environments to ensure guaranteed obtainment of the required mechanical characteristics. These characteristics are specified in GOST 632-80 and met in order to improve the properties of the 40H steel.

2021 ◽  
Author(s):  
Nachiket Arbad ◽  
Fernando Rincon ◽  
Catalin Teodoriu ◽  
Mahmood Amani

Abstract The catastrophic events faced by the Oil and Gas industry in the past depict the importance of maintaining the integrity of the well. The cement acts as a crucial barrier throughout the life cycle of the well. The contamination of the cement occurs due to inefficiency in cementing practices and operations. Experimental investigations have been done on the reduction in mechanical properties of different API class cement considering contamination with water-based mud and oil-based mud. This study focuses on analyzing the changes in mechanical properties of API Class C cement on varying the following parameters: OBM contamination (0%, 0.6%, 1.1%, 2.2%, 4.3%) Curing time (4 hrs, 6 hrs, 8 hrs, 1 day, 3 days, 7 days) Temperature (25˚C, 75 ˚C) API recommendations were followed for preparing the cement slurries. The destructive, as well as non-destructive tests were carried out on the cement samples at ambient room temperature to measure the uniaxial compressive strength (UCS) for OBM contaminated class C cement slurries. The general trend observed is that the UCS increases with an increase in curing time and temperature. UCS decreases with an increase in OBM contamination. Logarithmic trends were obtained for UCS vs curing time for different contaminations at a given temperature. Exceptions were observed at lower curing times where contaminated samples showed better results than the neat cement slurries. These observations play a critical role in understanding contaminated cement behavior. This widespread work was carried out only on API Class C cement to provide reliable data for future references. The correlations presented in this paper will help operators estimate the deterioration in mechanical properties of Class C cement in the presence of low OBM contamination. Email: [email protected] & [email protected]


Author(s):  
Andrea Gruttadauria ◽  
Silvia Barella ◽  
Anna Guerra

AbstractThe CW6MC alloy is a nickel-based alloy used to withstand acidic environments, especially in the oil and gas industry where it is used in the production of valves, impellers, and pipes. This alloy is the foundry counterpart of the best known A625 for plastic deformation. Regarding nickel-based alloys, a scrap market like that in the case of steel has not yet been established, therefore, especially in the case of foundries, scrap generally comes from internal recycling (casting waste, feeders, sprues, runners, etc.) to be certain of the origin and quality of the material. In this work, four castings with different percentage of recycled content (0%, 30%, 70%, 100%) were produced in accordance with the technical specifications and analysed to evaluate the effect of scrap on the final chemical composition, the microstructure, the mechanical properties and corrosion resistance. Following the analyses carried out, it was determined that the amount of acceptable scrap content (of those analysed) without compromising the material properties corresponds to 30%.


2019 ◽  
Vol 57 (2) ◽  
pp. 68-73
Author(s):  
Evgeny N. Egorov ◽  
◽  
Nikolay F. Ushmarin ◽  
Sergey I. Sandalov ◽  
Ivan S. Spiridonov ◽  
...  

The article investigated the effect of caoutchoucs, sevilen 11808-340, vulcanizing groups, fillers, plasticizers, ingredients of directional actions on the physical and mechanical properties (conditional tensile strength, elongation at break, hardness, rebound elasticity, tear resistance) and operational properties (changes of conditional tensile strength of rubbers after exposure to oil, weight changes after aging of rubbers in a solution of citric and hydrochloric acids, changes in the volume of rubbers after exposure to a mixture of oil and water) of two rubbers. These rubbers are developed for the manufacture of the outer and inner layers of water-oil-swellable sealing elements (WSOE) for the oil and gas industry. It has been established that rubber for the outer layer of WSOE based on butadiene-nitrile BNKS-18AMN, isoprene SKI-3 and butadiene CKD caoutchoucs, as well as rubber for the inner layer of UEN based on butadiene-nitrile BNKS-18AMN, butadiene methylstyrene SKMS-30ARK and butadiene CKD caoutchoucs possess the required physicomechanical and operational properties. It was shown that these rubbers containing a vulcanizing group sulfur + thiazole 2 MBS, sevilen 11808-340, a combination of carbon black T 900 with rosil 175, talc and chalk, petroleum resin “Sibplast”, vermiculite and igloprobivnoe cloth, are characterized by improved physical-mechanical and operational properties. These rubber can be recommended as the basis for the manufacture of outer and inner layers of water-oil-swelling sealing elements.


2020 ◽  
Vol 64 (10) ◽  
pp. 94-97
Author(s):  
Ivan S. Spiridoniv ◽  
◽  
Nikolay F. Ushmarin ◽  
Nadezhda A. Semenova ◽  
Sergey I. Sandalov ◽  
...  

The article presents the results of a study of the effect of the technological active additive СD-12, which is a combination of zinc salts of fatty acids, on the physical and mechanical properties and resistance to aggressive media of rubber for sealing elements of packer-anchor equipment. The rubber mixture was prepared on the basis of hydrogenated nitrile-butadiene rubber Therban 3406, vulcanizing agent Novoperox BP-40, coagents for vulcanization of zinc monomethacrylate and oligoester acrylates MGF-9 and TGM-3, antioxidants Naugard 445 and agidol-2, fillers of technical carbon P 514 and T 900, filler dispersant stearic acid, rosin softener and other ingredients. To stabilize the physical and mechanical properties of vulcanizates, uniform dispersion of rubber components, reduce viscosity and improve vulcanization properties, a technological additive CD-12 was also introduced into the rubber mixture. The rubber mixture was prepared in a laboratory SKI-3L rubber mixer at a temperature not exceeding 70 °C for 7 min. The resulting mixture was vulcanized on a PV-100-2RT-2-PCD vulcanization press at a temperature of 150 °C for 60 minutes and then further vulcanized in a thermostat at a temperature of 160 °C for 6 hours. For the obtained vulcanizates, the physical and mechanical properties and resistance to the action of aggressive media were determined according to the standards existing in the rubber industry. On the basis of a rubber mixture heat-aggressive persistent sealing elements with a hardness of 70±5 Shore A units were made. These sealing elements as part of two sets of packer-anchor equipment were tested for tightness in a casing string simulator. The tests were carried out in an environment of PMS-200 polymethylsiloxane fluid at a temperature of 150 °C, an axial load of 6 tons and a pressure of 70 MPa. It is shown that both sets of packers have passed the tests and meet the requirements. The developed rubber mixture with a hardness of 70±5 Shore A units, containing the process additive СD-12, can be used for the manufacture of sealing elements for packers used in the oil and gas industry.


2011 ◽  
Vol 172-174 ◽  
pp. 899-904 ◽  
Author(s):  
Andrea Bojack ◽  
Lie Zhao ◽  
Jilt Sietsma

Supermartensitic stainless steels possess an excellent combination of strength, toughness and corrosion resistance and have attracted an increased industrial attention especially from the offshore oil and gas industry, where those materials are already successfully in use. It is well known that the mechanical properties of this type of steels are strongly dependent on the fraction of retained austenite, which is controlled by heat treatment. Because the products manufactured out of these steels are in large sections, temperature gradients and corresponding compositional inhomogeneities are inevitable. Also during heat treatment partitioning of elements between the phases will give local concentrations far removed from the bulk levels. In the present work a 13Cr6Ni2Mo supermartensitic stainless steel is thermodynamically analyzed using the Thermo-Calc®software package where the influence of compositional variations on phase transformations is investigated, in particular the effect of changes in the Ae3-temperature is discussed.


2018 ◽  
Vol 15 (29) ◽  
pp. 56-63
Author(s):  
D. MARTINAZZI ◽  
G. V. B. LEMOS ◽  
H. R. P. CARDOSO ◽  
R. E. DOS SANTOS ◽  
J. Z. FERREIRA ◽  
...  

The new challenges of the oil and gas industry require noble materials with chemical stability and greater mechanical properties. Alloy 625, popularly known as Inconel® 625, is used as a cladding material for pipelines and other components. Therefore, the study of joining methods that produce excellent welded joints is essential. Thus, in this study, welded sheets of Inconel 625 were produced by Friction Stir Welding (FSW) and afterwards they were subjected to a heat treatment to evaluate the susceptibility to sensitization by the Double Loop Electrochemical Potentiokinetic Reactivation(DL-EPR)technique. In addition, microhardness profiles were performed before and after the isothermal treatment. The microhardness results indicated that the increased hardness is due to the carbides formation after heat treatment. On the other hand, electrochemical tests showed that FSW process can significantly affect the degree of sensitization.


Author(s):  
Shunichi Tachibana ◽  
Yota Kuronuma ◽  
Tomoyuki Yokota ◽  
Shinji Mitao ◽  
Hitoshi Sueyoshi ◽  
...  

Demand for CRAs (Corrosion Resistant Alloys) clad steel is getting increased for pipeline application of oil and gas industry because of economic advantage over solid CRAs. CRAs clad steel consists of a CRAs layer for corrosion resistance and a carbon steel for mechanical properties. Nickel based Alloy625 is known to be suitable for harsh environmental condition such as high temperature and high pressure H2S (hydrogen sulfide) condition. In this paper, the corrosion resistance of Alloy625/X65 clad steel plate for pipe produced by TMCP (Thermo-Mechanical Control Process) was investigated. TTP (Time - Temperature - Precipitation) and TTS (Time - Temperature - Sensitization) diagram of Alloy625 indicated precipitation nose, e.g. M6C and M23C6 which would cause deterioration of corrosion resistance. TMCP enable Alloy625 to avoid long time exposure to the precipitation nose. In Huey test, the corrosion rate in TMCP was almost the same as that of solution treated Alloy625 and smaller than that in Q-T (Quench and Temper). In ferric chloride pitting test, no pitting was observed in Alloy625 layer of TMCP type clad steel. In addition, the corrosion test simulating service environment using autoclave apparatus was conducted under the condition of 0.39MPa H2S - 0.53MPa CO2 - Cl− solution at 200°C. Alloy625 clad steel produced by TMCP showed neither SSC (Sulfide stress corrosion cracking) nor crevice corrosion. All the mechanical properties of base carbon steel satisfied API 5L grade X65 specification by optimizing TMCP conditions. It is notable that 85% SATT of DWTT was below −10 °C. Thus, Alloy625/X65 clad steel plate for pipe produced by TMCP with both superior corrosion resistance and low temperature toughness has been developed.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
A. Dahi Taleghani ◽  
G. Li ◽  
M. Moayeri

One of the serious challenges encountered in cementing oil and gas wells is the failure of the cement sheaths and its debonding from casing or formation rock. Shrinkage of the cement during setting is identified as one of the driving factors behind these issues. Some expansive cement systems have been developed in the oil and gas industry to compensate for the shrinkage effect. All the expansive additives which have been developed so far have chemical reactions with the cement itself that would significantly impact the mechanical strength of the cement. In this paper, we present a new class of polymer-based expandable cement additive particles which are made of shape memory polymers (SMP). This class of polymers is designed to expand to the required extent when exposed to temperatures above 50–100 °C (122–212 °F) which is below the temperature of the cementing zone. It is notable that expansion occurs after placement of the cement but before its setting. The API RP 10 B-2 and 5 have been followed as standard test methods to evaluate expansion and strength of the cement slurry after utilizing the new additive. The proposed additive does not react with the water or cement content of the slurry. Mechanical evaluation tests confirm the potential benefit of this additive without any deteriorative effect on mechanical properties or setting time of the cement paste and significant impact on its mechanical properties. Hence, this additive would provide a reliable way to prevent cement channeling, debonding, and fluid migration to upper formations.


2020 ◽  
Vol 13 (1) ◽  
pp. 66-73
Author(s):  
А.С. Усейнов ◽  
А.А. Русаков ◽  
В.И. Яковлев ◽  
Е.В. Гладких

A modification of the "NanoScan-4 D" nanohardness meter, which allows of measuring the mechanical properties of articles by the instrumental indentation according to GOST R8.748-2011 under conditions close to industrial fabrication, has been developed. The main advantage of the described device, unlike most modern portable hardness testers, is the ability to work with a wide class of materials (from metals to solid polymers) since the study of the mechanical properties of products does not require preliminary information on the elastic modulus of the material being tested. Presented are the experimental data obtained on standard samples of the enterprise: polycarbonate and aluminum, as well as on various metal articles used as parts of machines and mechanisms of the oil and gas industry. The measured values of hardness coincide with the values obtained on a laboratory nanohardness meter taking into account the inherent errors of this type of equipment.


Sign in / Sign up

Export Citation Format

Share Document