Experimental Investigation on Bending Performance of Steel-Concrete Composite Slim Beams

2020 ◽  
Vol 853 ◽  
pp. 182-186
Author(s):  
Yu Chen Jiang ◽  
Xia Min Hu ◽  
Huai Dong Yan

In this paper, the mechanical behavior of steel-concrete composite slim beams was investigated by experiments, and the influence of sectional dimension of steel beams on the bending stiffness and flexural capacity of composite slim beams was evaluated. Test results show that good cooperative performance can be achieved in steel-concrete composite slim beams and the relative slip between steel and concrete is very small. The steel-concrete slim beam presents considerable deformation ability beyond the service stage, which indicates that the composite slim beam has good ductility. In addition, sectional dimension of steel beams is proved to have significant influence on both the bending stiffness and flexural capacity of composite slim beams.


2012 ◽  
Vol 184-185 ◽  
pp. 988-991
Author(s):  
Seung Hun Kim

Use of hollow material in slab can reduce self-weight and deflection than solid slab with CFRP reinforcement. This study was intended to evaluate the bending performance of void flexural members with CFRP reinforcements by bending tests. Test results showed that specimens with void and solid section had the similar failure mode by concrete crushing at the compression zone, and that there was a big flexural capacity difference between the two section. Flexural capacity of solid section with CFRP bars was increased by 55% for void section. Thus, for the design of flexural members with CFRP bars by concrete crushing failure, it is important to calculate the exact distribution of strains and stresses, and to consider the reduction of flexural strength of void section.



2020 ◽  
pp. 136943322098166
Author(s):  
Shuhao Yin ◽  
Bin Rong ◽  
Lei Wang ◽  
Yiliang Sun ◽  
Wuchen Zhang ◽  
...  

This paper studies the shear performance of the connection with the external stiffening ring between the square steel tubular column and unequal-depth steel beams. Two specimens of interior column connections were tested under low cyclic loading. The deformation characteristics and failure modes exhibited by the test phenomena can be summarized as: (1) two specimens all exhibited shear deformation in steel tube web of the panel zone and (2) weld fracture in the panel zone and plastic hinge failure at beam end were observed. Besides, load-displacement behaviors and strain distributions have been also discussed. The nonlinear finite element models were developed to verify the test results. Comparative analyses of the bearing capacity, failure mode, and load-paths between the equal-depth and unequal-depth beam models have been carried out.



Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Siva Avudaiappan ◽  
Erick I. Saavedra Flores ◽  
Gerardo Araya-Letelier ◽  
Walter Jonathan Thomas ◽  
Sudharshan N. Raman ◽  
...  

An experimental investigation is performed on various cold-formed profiled sheets to study the connection behavior of composite deck slab actions using bolted shear connectors. Various profiles like dovetailed (or) re-entrant profiles, rectangular profiles and trapezoidal profiles are used in the present investigation. This experimental investigation deals with the evaluation of various parameters such as the ultimate load carrying capacity versus deflection, load versus slip, ductility ratio, strain energy and modes of failure in composite slab specimens with varying profiles. From the test results the performance of dovetailed profiled composite slabs’ resistance is significantly higher than the other two profiled composite deck slabs.



2010 ◽  
Vol 146-147 ◽  
pp. 1524-1528 ◽  
Author(s):  
Xue Zhi Wang ◽  
Zong Chao Xu ◽  
Zhong Bi ◽  
Hao Wang

The wedge splitting test specimens with three series of different relative crack length were used to study the influences of relative crack length on the fracture toughness of common concrete. The suitable formulation for fracture toughness of concrete with different relative crack length was gotten on comparing between fracture toughness test results and computation results of the model developed from Hu formula.



2011 ◽  
Vol 243-249 ◽  
pp. 258-262
Author(s):  
Jun Chen ◽  
Jia Lv ◽  
Qi Lin Zhang ◽  
Zhi Xiong Tao ◽  
Jun Chen

Laminated glass has been increasing widely used in high rise buildings as a kind of safety glass in recent years. So we should analyze its material property. In this paper, we use flexural experiments and ANSYS program to analyze the main factors that affect the flexural capacity of the laminated glass. The test results show that the flexural capacity is closely related to film. And the ANSYS program had got good agreement with the experimental results. Comparison of experimental results with calculated ones indicates that the current design code will lead to conservative results and the equivalent thickness of laminated glasses provided in the code should be further discussed.



Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.



2014 ◽  
Vol 919-921 ◽  
pp. 1794-1800
Author(s):  
Xin Zhi Zheng ◽  
Xin Hua Zheng

Abstract: 7 square steel tubular columns were tested to discuss the ultimate axial bearing capacity, ductility performance and the steel consumption under stiffened by steel belts and binding bars of different cross-sections. Test results indicate that only by increasing fewer amounts of steel usage, stiffened square CFST columns with binding bars can not only improve the overall effects of restraint and alleviate regional local buckling between the binding bars, but also improve the bearing capacity of concrete filled square steel tubular columns. The utility benefits and the economical benefit is considerable, deserving extensive use.



Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.



2010 ◽  
Vol 163-167 ◽  
pp. 3634-3639
Author(s):  
Li Li Sui ◽  
Tie Jun Liu ◽  
Feng Xing ◽  
Yu Xiang Fu

This paper illustrates the results of an experimental study on the bending performance of concrete beams strengthened with near-surface mounted (NSM) FRP reinforcement. The critical parameter of the embedded length of NSM-FRP plates was investigated in particularly. The test results indicated that NSM-FRP reinforcement can significantly improve the strength and crack resistance capacity of the concrete beam, reducing the size of cracks. The embedded length of the NSM-FRP plate has distinct influence on the cracking and bending capacity, the flexural stiffness, and the crack developments of the concrete beam. As the embedded length increased, the bending capacity and the flexural stiffness increased correspondingly and the crack developed more intensively.



2011 ◽  
Vol 268-270 ◽  
pp. 659-663
Author(s):  
Hua Chen ◽  
Kan Kang ◽  
Lang Ni Deng

The method of applying prestress to CFRP plates can make full use of the characteristics of high-strength, enhance the force properties, prevent peeling damage and reduce the strain lag. Construction technology of prestressed CFRP plates strengthening reinforcement concrete beams was introduce in this paper, and bending test of 6 reinforcement concrete beams strengthened with prestressed CFRP plates were carried out based on the self-developed prestressed CFRP plates supporting anchorages. The test results indicate that the flexural capacity and crack resistance capacity can be increased compared with non-prestressed CFRP plates, and the construction technology can be adopted in practical projects.



Sign in / Sign up

Export Citation Format

Share Document