The Study of Creep and Deformation Properties of Sulfur-Containing Arbolit Exposed to Various Compression Stresses

2021 ◽  
Vol 899 ◽  
pp. 137-143
Author(s):  
Yulia A. Sokolova ◽  
Marina A. Akulova ◽  
Baizak R. Isakulov ◽  
Alla G. Sokolova ◽  
Berikbay B. Kul’sharov ◽  
...  

The present paper considers the study of creep and deformation properties of sulfur-containing arbolit exposed to various compression stresses. Investigating the creep of lightweight arbolit concretes greatly affecting the performance of bearing and envelope structures draws a special attention during the last years. This issue is of particular relevance in the regions with hot and sharp continental climate. Arbolit concrete is one of the lightest building materials with low thermal conductivity and good soundproof properties. The modern postulates of theory and practice of creation, development of high-strength arbolit concretes on the base of composite sulfur-containing binders have become the methodological framework of the present research. While carrying out scientific research, the following standard measuring and analysis methods of physical and mechanical properties have been used for sulfur-containing arbolit composites. Experimental tests have been implemented on the 28-days samples made of sulfur-containing arbolit, with the cotton plant footstalks as an organic component. The researched samples were vapor sealed with the purpose to eliminate overlapping the processes of contraction and creep. The experimental results have shown that the analysis of prisms deformation in time demonstrates certain derivation from the pattern. Deformation of prisms made of sulfur-containing arbolit loaded at the low stress level were growing at a slower rate that the same deformations at a higher stress level. No derivation has been observed for the prisms of sulfur-containing haydite concrete. For both types of concrete, creep deformation has reached the values exceeding completely recoverable deformation by a factor of 2 or all the samples, the rapid growth of creep deformation has been observed after loading, followed by the gradual slowdown of deformation growth. For sulfur-containing lightweight concretes, as the test shown, the rate of creep deformation growth depends on the hardening curve in time reflecting the process of concrete hardening. This, if compared with sulfur-containing lightweight concretes, creep of sulfur-containing arbolit concrete is significantly lower that eventually leads to the loss of creep deformation at the same stress level. The obtained results can be used when manufacturing an efficient wall material for residential construction, including seismic areas.

2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.


2020 ◽  
Author(s):  
Maryna Leshchyshyn Mykolaivna ◽  
Svitlana Stepanivna Garkavenko ◽  
Antonina Ivanivna Babich

Determination of values and dependencies of deformation and physical and mechanical properties of materials of shoe models and finished products. According to the results of theoretical, analytical and marketing research, a number of experimental tests of materials have been carried out to prove the practical significance of the work, namely tests for: deformation of the vamp part of the product, uniaxial and biaxial stretching, bending, dry and wet friction, adhesion, elongation and tearing. There has been established the nature of the distribution of the total elongations of the samples of the vamps cut from different areas of the leather, as well as the ability of the leather material to be formed when improving the shape of the product or changing the shape of the shoetree. The processes of deformation of the vamp part of shoe blanks, physical and mechanical properties of different groups of modern materials and values analysis of similarity of their deformation properties have been studied. There has been created a working model-transformer for carrying out preliminary measurement of clients’ feet at the individual order. The expediency of these works has been proved experimentally. A working version of a model-transformer for foot measurements has been made and as a result of the works approbation, a sample of shoes has been made. The ergonomic properties of the manufactured footwear have been improved due to the use of materials with enhanced physical and mechanical properties. The article investigates the deformation of the most vulnerable vamp part of the men's model of a typical model, as well as the physical and mechanical characteristics of leather materials for manufacturing models and shoes of this type. Providing high quality and comfort of footwear, accuracy of parameters selection of foot measurement, zones of beams and achievement of form stability of footwear with a top from genuine leathers has been predicted.


2021 ◽  
Vol 1041 ◽  
pp. 23-27
Author(s):  
Adnan Ahmed ◽  
Naveed Akmal Din

The main aim of this paper is to study and analyze methods of predicting the serviceability and lifespan of ballistic armors made of a high-strength polyethylene ultra-high molecular weight (UHMWPE) fibers composites. Experimental tests were conducted on the accelerated use of composite ballistic inserts in lab to predict the durability; changes in the ballistic, physical, and mechanical properties occurring due to accelerated conditions of use. Data of following ageing simulation methods under controlled environment was used. 1-Application of mechanical load to the insert, 2-application of mechanical load and temperature cycle treatment to the product and 3-applying mechanical load, temperature cycle and immersion in liquid solution simulating human sweat to the test product. It was revealed that mechanical loading, temperature cycling, and the solution simulating human sweat incites the degradation and disintegration of the polyethylene material. To evaluate the correlation between the natural ageing process and the simulated one, ballistic insert samples were also examined under natural conditions for 5, 7, 9 and 13 years. Ansys Workbench Explicit Dynamics (R1 2020) and Solidworks (2018) were used to model and simulate the ballistic impact on standard product as well as accelerated aged samples. Experimental testing data was used in simulation and results were compared to analyze the ageing behavior of composite armor.


2017 ◽  
Vol 755 ◽  
pp. 90-95 ◽  
Author(s):  
Rostislav Šulc ◽  
Petr Formáček

This article presents the results of the bottom ash from Circulating fluidized Bed Combustion (CFBC). Ashes were modified by grinding in their physical parameters. For this treatment was used the tumbling ball mill at CTU in Prague. In this case were used bottom ashes from Ledvice power plant. Samples of bottom ash were milled in specific amounts and grinding times. The modified samples were tested for the effect of amount of bottom ash in the mill and grinding time on its granulometry. For this testing was used laser diffraction method with particle size analyzer. Milling seems to be great way to get material with better physical and mechanical properties. The reason for this experiment was to better understand behaviour of bottom ash during grinding and made fine filler with specific features for composite building material with high strength.


2021 ◽  
Vol 1043 ◽  
pp. 55-59
Author(s):  
Vladimir Morgun ◽  
Denis Votrin ◽  
Aleksei Revyakin

The urgency of improving the performance properties of concrete, as the most common building materials, is noted. The reasons for the increased demand for products made of high-strength gas-filled concrete are stated. It is shown that the current volume of polymer fibers production makes it possible to predict the possibility of their widespread use in construction. The information on the physical and mechanical properties of synthetic fiber, which is important for its successful use as dispersed reinforcement of foam concrete mixtures, is presented. The technology of manufacturing experimental samples and methods of their testing are described. It has been established that the introduction of any synthetic fiber into the foam mixture formulation improves the structural properties of foam concrete, however, the measure of efficiency depends on the ratio between the concrete moduli of elasticity and fiber. The greater the value of the elastic modulus of the fiber used, the higher the technical effect of its use in fiber-reinforced concrete for structural purposes can be.


2021 ◽  
Vol 62 (4) ◽  
pp. 340-348
Author(s):  
Leonid Dvorkin ◽  
Lyudmila Nihaeva

The paper presents the results of experimental studies of the possibility of obtaining modified supersulfate cements (SSC) with improved physical and mechanical properties on lowalumina blast-furnace granular slags. It has been shown in comparative experimental tests of the effect of admixtures of various sulfate activators that the highest strength of cements is achieved when using a phosphogypsum neutralized with lime. An additional activating effect has been established for supersulfated cements with the introduction of admixtures fluorides and, in particular, fluorides of magnesium, calcium and sodium silicofluoride. The additional introduction of hardening accelerators and their compositions with a superplasticizer into the SSC composition makes it possible to increase the compressive strength of cements at 28 days of age up to 60-65 MPa while achieving high strength at an early age. Along with standard tests, experiments were performed using mathematical planning with obtaining adequate regression equations.


2015 ◽  
Vol 744-746 ◽  
pp. 1543-1546
Author(s):  
Le Le Yu ◽  
Jia Dai Chen ◽  
Yi Wen Wu

Ceramsite concrete and ceramsite concrete block are characterized by lightweight, high strength and good thermal insulation properties, which are widely applied to construction. If amoderate amount of polystyrene particles is added during the working process of ceramsite concrete block in order to improve its physical properties, a kind of new ceramsite concrete building materials is produced. Based on the experimental studies, the article expounds the physical and mechanical properties in terms of density, water absorption and compressive strength, with the purpose of providing reliable evidence for the application and popularization of new ceramsite concrete block.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5444
Author(s):  
Xiaoshuai Han ◽  
Weijie Wu ◽  
Jingwen Wang ◽  
Zhiwei Tian ◽  
Shaohua Jiang

Preparing a lightweight yet high-strength bio-based structural material with sustainability and recyclability is highly desirable in advanced applications for architecture, new energy vehicles and spacecraft. In this study, we combined cellulose scaffold and aramid nanofiber (ANF) into a high-performance bulk material. Densification of cellulose microfibers containing ANF and hydrogen bonding between cellulose microfibers and ANF played a crucial role in enhanced physical and mechanical properties of the hybrid material. The prepared material showed excellent tensile strength (341.7 MPa vs. 57.0 MPa for natural wood), toughness (4.4 MJ/m3 vs. 0.4 MJ/m3 for natural wood) and Young’s modulus (24.7 GPa vs. 7.2 GPa for natural wood). Furthermore, due to low density, this material exhibited a superior specific strength of 285 MPa·cm3·g−1, which is remarkably higher than some traditional building materials, such as concrete, alloys. In addition, the cellulose scaffold was infiltrated with ANFs, which also improved the thermal stability of the hybrid material. The facile and top-down process is effective and scalable, and also allows one to fully utilize cellulose scaffolds to fabricate all kinds of advanced bio-based materials.


Author(s):  
I.R. Antypes ◽  
◽  
V.V. Zaitsev ◽  

Currently, the use of composite materials is increasingly used in various areas of the national economy, including the aviation industry. The materials of this article are devoted to the study of the use of composite materials for the manufacture of aircraft landing gear in comparison with the traditionally used brand of steel. As a result of the work carried out, it was found that the slope made of carbon fiber showed a critical stress twice as high as its design made of 30xgsn2a steel. In addition, carbon plastics are superior to high-strength steel in terms of specific strength, stiffness, and tensile strength.


Author(s):  
Жанна Владимировна Вечеркина ◽  
Наталия Владимировна Чиркова ◽  
Михаил Анатольевич Крючков ◽  
Виктор Сергеевич Калиниченко

Развитие технологий, основанных на использовании низкотоксичных материалов, позволит в скором будущем начать их применение в медицине. Применение наночастиц серебра, меди, кремния, цинка, титана, кобальта в качестве модифицирующей добавки позволит оказать активное влияние на структуру исходных материалов и изменение их свойств, а именно улучшение физико-механических, физико-химических и токсико-гигиенических свойств материалов. Наноразмерные частицы кремния, введенные в фиксирующие стоматологические материалы, приводят к улучшению физико-химических, физико-механических свойств кристаллизующихся материалов, а малая теплопроводность кремния может увеличить его рабочее время и снизить выделение тепла при реакции кристаллизации. Так как от этих характеристик зависит объем манипуляций, при фиксации ортопедических конструкций на опорных зубах целесообразно было бы привести рабочее время твердения к чистому времени твердения, что позволит увеличить объем манипуляций приготовленной массой без ухудшения ее свойств. Разработка высокопрочных, биосовместимых, высокотехнологичных нанопластмасс для базисов съемных пластиночных протезов является актуальной проблемой повышения качества жизни пациентов. Модификация наноразмерными частицами серебра, кремния акрилового полимера позволит улучшить такие физико-механические свойства, как ударную вязкость, прочность, температуростойкость, барьерные свойства, уменьшить усадку полимера на этапе полимеризации, в отличие от уже известных отечественных и дорогостоящих импортных полимеров. Наноразмерные частицы кремния, серебра являются сокатализаторами метилметакрилата, влияющими на уменьшение количества остаточного мономера после процесса полимеризации, тем самым повышая санитарно-химические и токсико-гигиенические характеристики полимера. Все вышеизложенное позволило сформулировать цель исследований по наноструктурированным материалам под руководством профессора …посвящается памяти профессора, д.м.н. Каливраджияна Э.С. The development of technologies based on the use of low-toxic materials will make it possible to begin their application in medicine in the near future. The use of nanoparticles of silver, copper, silicon, zinc, titanium, cobalt as a modifying additive will make it possible to actively influence the structure of the starting materials and change their properties, namely, improve the physicomechanical, physicochemical and toxicohygienic properties of materials. Nanosized silicon particles introduced into fixing dental materials lead to an improvement in the physicochemical, physicomechanical properties of crystallizing materials, and the low thermal conductivity of silicon can increase its working time and reduce heat generation during the crystallization reaction. Since the volume of manipulations depends on these characteristics, when fixing orthopedic structures on abutment teeth, it would be advisable to bring the working time of hardening to a pure hardening time, which will increase the volume of manipulations with the prepared mass without deteriorating its properties. The development of high-strength, biocompatible, high-tech nanoplastics for the bases of removable plate prostheses is an urgent problem to improve the quality of life of patients. Modification of acrylic polymer with nano-sized particles of silver and silicon will improve such physical and mechanical properties as impact strength, strength, temperature resistance, barrier properties, and reduce polymer shrinkage at the stage of polymerization, in contrast to the already known domestic and expensive imported polymers. Nanosized particles of silicon, silver are cocatalysts of methyl methacrylate, affecting the reduction of the amount of residual monomer after the polymerization process, thereby increasing the sanitary-chemical and toxic-hygienic characteristics of the polymer. All of the above made it possible to formulate the goal of research on nanostructured materials under the guidance of the professor …dedicated to the memory of the professor, d.m.s. Kalivrajiyan E.S.


Sign in / Sign up

Export Citation Format

Share Document