Effect of ZrB2 Functionalized Nanoparticles Growth on Microstructural and Corrosion Resistance on Mild Steel through Electrodeposition Route

2021 ◽  
Vol 900 ◽  
pp. 74-81
Author(s):  
Ojo Sunday Issac Fayomi ◽  
Mojisola Olubunmi Nkiko ◽  
Khadijah Tolulope Dauda ◽  
Kunle Michael Oluwasegun

In other to have a better performance of Ni-P-Zn multifunctional applications, crystallite-like Ni-P-Zn-ZrB2 composite was actively fabricated by electrodeposition principle. The corrosion, structural evolution and surface active phenomena were investigated by various techniques. The influence of ZrB2 particulate on the morphology and corrosion properties was examined. The outcomes show an inclusive flower-like doped ZrB2 phase constituent and is uniformly distributed Ni-P-Zn-ZrB2 improved strengthening effect. The corrosion progression of the developed metal alloy was compared with other coating matrix from 10-25 minutes interval. The integration of ZrB2 on Ni-P-Zn phase especially for 25 min deposits significantly enhances corrosion resistance due to good grain refinement. Keywords: Ni-based composite, electrodeposition, time difference, coating, corrosion

2021 ◽  
Vol 57 (6) ◽  
pp. 1206-1213
Author(s):  
B. U. Anyanwu ◽  
O. O. Oluwole ◽  
O. S. I. Fayomi ◽  
A. O. Olorunnisola ◽  
A. P. I. Popoola ◽  
...  

2018 ◽  
Vol 47 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Sandip D. Rajput ◽  
Chandrashekhar K. Patil ◽  
Vikas V. Gite

Purpose The present study aims to demonstrate the use of renewable source in the preparation of polyurethane (PU) coatings and mitigation of corrosion of mild steel using nano zinc phosphate. Results indicated improvement in the properties of the PU coatings, especially anticorrosive properties by the addition of nano zinc phosphate. Design/methodology/approach Renewable-source-based polyestermyristamide polyol was synthesized using myristic acid as a starting material. The synthesis of polyol was carried by amidation as well as by esterification by a one-pot route. The structure of the prepared polyestermyristamide was confirmed with the support of end-group analysis and spectral study. PU coatings were prepared from synthesized polyestermyristamide polyol and used to protect metal substrate against corrosion. Corrosion properties of the prepared PU were found to be lower; hence, to improve the performance of these coatings, nano zinc phosphate was added to the coatings. The nano zinc phosphate was synthesized in the laboratory by reported sonication method and analyzed for morphology by scanning electron microscopy. Performance of coatings was studied with respect to effect of percentage nano zinc phosphate on thermal stability, mechanical properties and chemical resistances of PU coatings. Findings The combination of zinc phosphate nano rods and particles in myristic acid-based PU coatings provided substantial corrosion barrier properties to the coatings. Different per cent of the synthesized zinc phosphate nano rods and particles were loaded into the matrix, and corresponding coatings were estimated for corrosion resistance, thermal and chemical properties. Immersion study of the coated panels in 3.5 per cent NaCl solution showed good corrosion resistance for both PU coatings containing 2 and 3 per cent nano zinc phosphate. Practical implications This paper has provided the solution to replace existing petroleum-based raw materials with myristic acid as a renewable source in preparing PU coatings. Conventional coatings act as physical barriers against aggressive species but do not have ability to perform as permanent impassable to corrosive species. Hence, nano-sized zinc phosphate is used as corrosion inhibitor in to the synthesized PU coatings for enhancing anticorrosive performance. Originality/value In the paper, polyesteramide polyol is synthesized using renewable-source-based material, i.e. myristic acid to replace existing petroleum-based acid as a greener approach. Normally, vegetable oils are preferred as they have such kinds of polyols. The polyesteramide reaction is one pot that avoids the extra steps required in the synthesis. Further, it has been found that the pristine renewable coatings are unable to fully protect subtract from corrosion, whereas an addition of the nano-size zinc phosphate has enhanced the corrosion properties of the coatings.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2901 ◽  
Author(s):  
Weizhan Wang ◽  
Zhigang Chen ◽  
Shunshan Feng

WC reinforced Al-based coating with added CeO2 was prepared on the surface of S420 steel by laser cladding. The microstructure and structure of the coatings were analyzed by scanning electron microscope, X-ray diffractometer and optical profiler. The mechanical properties and corrosion properties of the coatings were studied by microhardness tester, friction and wear tester, Charpy impact tester, and electrochemical workstation. The results show that the coating is mainly composed of Al-phase, continuous-phase, and hard reinforced-phase WC, and the coating and substrate show good metallurgical bonding. When the content of CeO2 is 1%, the fine grain strengthening effect is obvious, and the impact toughness of the coating is obviously improved. Appropriate amount of rare earth CeO2 can significantly improve the hardness of the coating. When the content of CeO2 is more than 1%, the wear resistance of the coating decreases. The coating prepared with different CeO2 content has higher impedance and corrosion resistance than that of the substrate. At 1% CeO2 content, the coating has the best corrosion resistance.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1762
Author(s):  
Artur Maciej ◽  
Natalia Łatanik ◽  
Maciej Sowa ◽  
Izabela Matuła ◽  
Wojciech Simka

One method of creating a brass coating is through electrodeposition, which is most often completed in cyanide galvanic baths. Due to their toxicity, many investigations focused on the development of more environmentally friendly alternatives. The purpose of the study was to explore a new generation of non-aqueous cyanide-free baths based on 1-ethyl-3-methylimidazolium acetate ionic liquids. The study involved the formation of copper, zinc, and brass coatings. The influence of the bath composition, cathodic current density, and temperature was determined. The obtained coatings were characterized in terms of their morphology, chemical composition, phase composition, roughness, and corrosion resistance. It was found that the structure of the obtained coatings is strongly dependent on the process parameters. The three main structure types observed were as follows: fine-grained, porous, and olive-like. To the best knowledge of the authors, it is the first time the olive-like structure was observed in the case of an electrodeposited coating. The Cu-Zn coatings consisted of 19–96 at. % copper and exhibited relatively good corrosion resistance. A significant improvement of corrosion properties was found in the case of copper and brass coatings with the olive-like structure.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 606
Author(s):  
Linchun Zhang ◽  
Ailian Zhang ◽  
Ke Li ◽  
Qian Wang ◽  
Junzhe Liu ◽  
...  

The electrical resistance and polarization effect of cement paste containing reinforcement were tested to research the anti-corrosion properties of steel bars in cement paste. Moreover, the microstructure and composition of passivation film and rust on the steel bars were studied. The water–cement ratio of the cement paste in this study was 0.3, with 0.5% NaCl, 1% NaNO2, and 1% Benzotriazole, and an assembly unit of 0.5% NaNO2 + 0.5% Benzotriazole by mass of cement was added to the cement to provide a chloride environment. X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were applied to research the composition of the passivation film and the microstructure of the cement paste, respectively. The results indicated that the samples with the assembly unit of 0.5% NaNO2 + 0.5% Benzotriazole showed the highest electrical resistance and polarization electrical resistance, while the specimens with 1.0% Benzotriazole showed the lowest electrical resistance and polarization electrical resistance. Moreover, the passivation film of steel bars weakened with increasing distance from the surface of the steel bars. Therefore, the corrosion of steel bars becomes more serious with increasing distance. Finally, the influence of the rust inhibitor on the corrosion resistance of steel bars in the specimens decreased in the following order: 0.5% NaNO2 + 0.5% Benzotriazole >1.0% NaNO2>1.0% Benzotriazole.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


Sign in / Sign up

Export Citation Format

Share Document