Mechanical and Wettability Performance of Sand/HDPE Composite Sheets

2020 ◽  
Vol 1015 ◽  
pp. 9-14
Author(s):  
Sidra Siraj ◽  
Ali Al Marzouqi ◽  
M.Z. lqbal

Polymer/composite sheets were developed using sand as the filler, and high-density polyethylene (HDPE), by melting extrusion in a melt blender followed by compression molding. The effects of addition of filler, and the addition of polyethylene grafted maleic anhydride (PE-g-MA) as the compatibilizing agent were investigated by observing the morphology, the mechanical performance as well as the wettability characteristic via contact angle measurements. A decreasing trend was observed with filler addition, both for the Young’s modulus and yield stress values of each of the samples, from 1200.81 MPa and 35.15 MPa at 0 wt% to 1182.33 MPa and 23.11 MPa for the non-compatibilized sheet at 35 wt%, to 629.95 MPa and 9.56 MPa in the case of the compatibilized sheet respectively. However, addition of filler did not significantly affect the surface wetting in any case, thereby promoting good anti-wetting performance for both sets of sheets. As a result, the potential use of such synthetic composite sheets could be considered as a good alternative for applications which require reduced ductility or increased anti-wetting performance.

2018 ◽  
Vol 14 (7) ◽  
pp. 2259-2259
Author(s):  
Tommi Huhtamäki ◽  
Xuelin Tian ◽  
Juuso T. Korhonen ◽  
Robin H. A. Ras

2016 ◽  
Vol 7 (6) ◽  
pp. 703-711 ◽  
Author(s):  
Dimitris K. Perivoliotis ◽  
Malamatenia A. Koklioti ◽  
Elias P. Koumoulos ◽  
Yiannis S. Raptis ◽  
Costas A. Charitidis

Purpose Carbon nanotube-based architectures have increased the scientific interest owning to their exceptional performance rendering them promising candidates for advanced industrial applications in the nanotechnology field. Despite individual CNTs being considered as one of the most known strong materials, much less is known about other CNT forms, such as CNT arrays, in terms of their mechanical performance. The paper aims to discuss these issues. Design/methodology/approach In this work, thermal CVD method is employed to produce VA-MWCNT carpets. Their structural properties were studied by means of SEM, XRD and Raman spectroscopy, while their hydrophobic behavior was investigated via contact angle measurements. The resistance to indentation deformation of VA-MWCNT carpets was investigated through nanoindentation technique. Findings The synthesized VA-MWCNTs carpets consisted of well-aligned MWCNTs. Static contact angle measurements were performed with water and glycerol, revealing a rather super-hydrophobic behavior. Originality/value The structural analysis, hydrophobic behavior and indentation response of VA-MWCNTs carpets synthesized via CVD method are clearly demonstrated.


2014 ◽  
Vol 1626 ◽  
Author(s):  
Jonathan Goff ◽  
Barry Arkles ◽  
Santy Sulaiman

ABSTRACTA facile technique was developed for a long-term increase in silicone elastomer surface hydrophilicity, eliminating the need for post-cure surface treatment (e.g. oxygen plasma or surface grafting). Well-defined silicones (1-4 kDa) with a central vinyl functionality and discrete PEG2, PEG3 and tetrahydrofurfuryl (THF) pendant endgroups were synthesized, characterized and used as comonomers in addition-cure, platinum catalyzed 2-part silicone elastomer formulations. The modified silicone elastomers were optically clear and maintained the mechanical performance characteristic of this class of material with up to 20 wt.% comonomer in the 2-part formulation. Contact angle measurements of deionized water on the silicone elastomer surface showed improved wettability with comonomer content. The elastomer surface shifted from hydrophobic (contact angle ∼120°C) to hydrophilic (contact angle < 90°C) at ∼5 wt.% comonomer loadings for extended time frames (> 5 months). Coefficient of friction measurements of the modified silicone elastomers revealed an increase in surface lubricity with comonomer loadings.


2018 ◽  
Vol 13 (7) ◽  
pp. 1521-1538 ◽  
Author(s):  
Tommi Huhtamäki ◽  
Xuelin Tian ◽  
Juuso T. Korhonen ◽  
Robin H. A. Ras

2006 ◽  
Vol 21 (1) ◽  
pp. 255-262 ◽  
Author(s):  
Oscar van der Straten ◽  
Yu Zhu ◽  
Jonathan Rullan ◽  
Kathleen Dunn ◽  
Alain E. Kaloyeros

Solid-state wetting experiments were carried out to derive the work of adhesion (adhesion energy) of pertinent Cu/liner interfaces via the Young–Dupré equation using contact-angle measurements of the Cu equilibrium crystal shape on Ta and TaNx liners. Four types of liner surfaces were examined: untreated sputtered Ta (uSp-Ta), untreated sputtered TaNx (uSp-TaN), untreated atomic layer deposited (ALD) TaNx (uALD-TaN), and indium surfactant-treated ALD TaNx (tALD-TaN). All Cu-liner stacks were subsequently annealed at 600 °C for 48 h in a forming gas (95% Ar/5% H2) ambient. For Cu/uSp-Ta, the work of adhesion was found to be 2170 mJ/m2, corresponding to an average contact angle of 74°, while for Cu/uSp-TaN, the work of adhesion amounted to 1850 mJ/m2 for an average contact angle of 85°. Alternatively, the work of adhesion for Cu/uALD-TaN was determined to be 1850 mJ/m2, corresponding to an average contact angle of 85°, while for Cu/tALD-TaN, the work of adhesion was 2280 mJ/m2, at an average contact angle of 70°. These findings indicate that the highest degree of surface wetting occurs for the indium surfactant-treated ALD TaNx. It is thus suggested that surfactant treatment causes a reduction in the energy barrier to Cu nucleation, resulting in an enhancement in Cu wetting characteristics and a more uniform concentration of Cu nucleation sites. A critical potential outcome is the formation of atomically smooth Cu-liner interfaces with enhanced adhesion characteristics.


2012 ◽  
Author(s):  
Narjes Shojaikaveh ◽  
Cas Berentsen ◽  
Susanne Eva Johanne Rudolph-Floter ◽  
Karl Heinz Wolf ◽  
William Richard Rossen

2007 ◽  
Vol 330-332 ◽  
pp. 877-880 ◽  
Author(s):  
E.S. Thian ◽  
J. Huang ◽  
Serena Best ◽  
Zoe H. Barber ◽  
William Bonfield

Crystalline hydroxyapatite (HA) and 0.8 wt.% silicon-substituted HA (SiHA) thin films were produced using magnetron co-sputtering. These films were subjected to contact angle measurements and in vitro cell culture study using human osteoblast-like (HOB) cells. A wettability study showed that SiHA has a lower contact angle, and thus is more hydrophilic in nature, as compared to HA. Consequently, enhanced cell growth was observed on SiHA at all time-points. Furthermore, distinct and well-developed actin filaments could be seen within HOB cells on SiHA. Thus, this work demonstrated that the surface properties of the coating may be modified by the substitution of Si into the HA structure.


Sign in / Sign up

Export Citation Format

Share Document