Microstructures and Mechanical Properties of AJ62 Magnesium Alloy with Y and Nd Elements

2011 ◽  
Vol 686 ◽  
pp. 253-259
Author(s):  
Xu Ning ◽  
Wei Dong Xie ◽  
Chun Mei Dang ◽  
Xiao Dong Peng ◽  
Yan Yang ◽  
...  

A series of Mg-6Al-2Sr-1.5Y-xNd (x=0, 0.3, 0.6, 0.9, 1.2) alloy samples were prepared and their microstructures were observed and mechanical properties were measured. The existing forms of Y and Nd were studied. The effects of Y and Nd on microstructure and mechanical properties of AJ62 alloy were investigated. The results show that the main existing forms of Y and Nd in AJ62 alloy are Al2Y and Al2Nd. The combined addition of rare earth Y and Nd can refine α-Mg matrix obviously and reduce the amount of the β-Mg17Al12phases; after solid solution treatment, the tensile strength of the alloys rise first and fall later with increasing content of Nd. When the content of Nd is about 0.6%wt, the values of tensile strengthes are up to the maximum both at room temperature and at 448 K.

2021 ◽  
Vol 1023 ◽  
pp. 45-52
Author(s):  
Xiao Yan Wang ◽  
Meng Li ◽  
Zhi Xun Wen

After solid solution treatment at 1335°C for 4 hours and cooling to room temperature at different rate, the nickel-based single crystal superalloy were made into three kinds of nickel-based single crystal superalloy materials containing different size γ′ phases, respectively. The tensile test of I-shaped specimens was carried out at 980°C, and their effect of γ′ phase microstructure on the tensile properties was studied. The results show that the yielding strength of the material air-cooled to room temperature was lower than that with cooling rate at 0.15°C/s, but both of them were lower than the yielding strength of original material. Little difference was found on the elastic modulus of I-shaped specimens made of three kinds of materials. When the cubic degree of the γ′ phase is higher and the size is larger, the tensile properties of the material is better, which can be attributed to the larger size and narrower channel of the matrix phase that lead to higher dislocation resistance.


2011 ◽  
Vol 335-336 ◽  
pp. 783-786
Author(s):  
Fu Yin Han ◽  
Lin Hai Tian ◽  
Hong Xia Wang ◽  
Wei Liang ◽  
Wen Xian Wang

Sr added ignition-proof AZ91D-0.3Be magnesium alloy was prepared. The influence of Sr content on microstructure and mechanical properties of the alloy was studied. Results show that the microstructure of ignition-proof AZ91D-0.3Be magnesium alloy is refined by a small amount of Sr addition. It is due to that the enrichment of a few Sr atoms in solid liquid interface in the process of magnesium alloy solidification inhibits grain growth and accelerates more nucleation. However, with increasing of Sr addition the microstructure is coarsened. By 0.01% Sr addition the tensile strength of as-cast experimental alloy is increased by about 25% and that of both the solid-solution and aged alloy is increased by about 40%. The elongation of as-cast alloy is increased by about 20% and that of solid-solution alloy increased by about 30%.


2010 ◽  
Vol 129-131 ◽  
pp. 886-890
Author(s):  
Da Wei Cui

The influence of solution annealing on the microstructure and mechanical properties of high nitrogen Fe-Cr-Mn-Mo-N austenitic stainless steels prepared by MIM was investigated. The results show that the solution treatment can improve the microstructure and properties of the stainless steels significantly. The sintered specimens before solution annealing consist of γ-austenite and embrittling intergranular Cr2N precipitates, showing a low mechanical property. After solid solution annealing, the specimens reveal a fully austenitic structure without any intergranular nitrides, whose tensile properties are much higher than those without solution annealing, which is attributed to the elimination of the nitride precipitation along the grain boundaries and the greater amount of nitrogen retained in solid solution. A mixed mode of intergranular and dimple fracture happen to the specimens before solid solution treatment, while a completely tough fracture of dimple happen to those after solid solution treatment.


2016 ◽  
Vol 879 ◽  
pp. 653-658
Author(s):  
Ju Hyun Won ◽  
Seok Hong Min ◽  
Tae Kwon Ha

Effect of B addition on the microstructure and mechanical properties of AZ84 Mg alloy was investigated in this study. Through calculation of phase equilibria of AZ84 Mg alloy, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperature of 330oC, where supersaturated solid solution can be obtained. Solid solution treatment of AZ84 Mg alloy was successfully conducted at 330oC and supersaturated microstructure with all almost all phases resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples in as-cast, solution treated, hot-rolled and subsequently recrystallized states. After solid solution treatment, each alloy was soaked at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 oC for 10 hrs for ZA84 Mg alloy. By addition of boron, aging kinetics was expedited and strength was enhanced.


2011 ◽  
Vol 239-242 ◽  
pp. 352-355
Author(s):  
Quan An Li ◽  
Qing Zhang ◽  
Chang Qing Li ◽  
Yao Gui Wang

The effects of 2-12 wt.% Y addition on the microstructure and mechanical properties of as-cast Mg-Y binary alloys have been investigated. The results show that proper content of rare earth Y addition can obviously refine the grains and form high melting point Mg24Y5 phases in the matrix, and improve the microstructure and mechanical properties of the alloys. At room temperature, the optimum combination of ultimate tensile strength and elongation, 195MPa and 7.5%, is obtained in Mg-10 wt.% Y alloy.


Author(s):  
R. Ahmad Et.al

The influence of samarium (Sm) content on the solidification characteristics, microstructure, and mechanical properties of Mg–2.8wt%Nd–1.5wt%Gd–0.5wt%Zn–0.5wt%Zr magnesium alloy was studied. The cooling curves and microstructure analysis results showed that Sm rare earth element refined the grains of the alloys, where the solidification time of α-Mg phase of decreased as addition of Sm, which reflected to the microstructure of alloy and the grains became refined, also Sm combined with the initial phase of the intermetallic base alloy and crystallized along the grain boundaries. In addition, Mg41Sm5, Mg3Zn6Sm and (Mg, Zn)3Sm new intermetallic phases were formed as addition of Sm. Both grain refinement and formed intermetallic phases led to the improvement in hardness and tensile strength.


2005 ◽  
Vol 297-300 ◽  
pp. 1220-1222
Author(s):  
Shi Chang Cheng ◽  
Zhao Jie Lin ◽  
Gang Yang ◽  
Zheng Dong Liu

The authors experimentally investigated the change of mechanical properties of Inconel X-750 alloy under various heat treatments. For the selected specimens, solid solution treatment under different temperatures was carried out, followed air cooling or furnace cooling. Results show that suitable solid solution treatment and air cooling enhances the strength, plasticity, impact toughness at room temperature of the alloy and lowers the hardness of the alloy at room temperature.


Sign in / Sign up

Export Citation Format

Share Document