Progress of Microstructure and Texture of High Purity Tantalum Sputtering Target

2021 ◽  
Vol 1035 ◽  
pp. 704-711
Author(s):  
Jiang Hao Bai ◽  
Xiao Dong Xiong ◽  
Jun Feng Luo ◽  
Guo Jin Xu ◽  
Yong Jun Li

In recent years, the IC (integrated circuit) industry has developed rapidly and the chip process technology has developed in the direction of higher density. Because of its good chemical stability, tantalum is used as a sputtering coating material for the diffusion barrier in the copper interconnect process. The uniform microstructure of the tantalum target directly affects the sputtering performance. The fabrication of high-quality thin films requires the tantalum target to have fine and uniform crystal grains and random grain orientation distribution. However, due to the characteristics of tantalum, it is easy to form a microstructure with {100} (<100>//ND) orientation on the surface and {111} (<111>//ND) orientation on the core during cold working. During the fabrication of thin films, the sputtering rate varies with the thickness of the target, which affects the sputtering stability. To provide ideas for improving the uniformity of the microstructure of the tantalum target, this article reviews the preparation processes that affect the grain orientation and size of the high-purity tantalum target, including forging methods, rolling methods, recrystallization annealing, etc., analyze the law of texture evolution of tantalum and introduction the research status of cold working and recrystallization.

2005 ◽  
Vol 105 ◽  
pp. 107-112
Author(s):  
Yan Dong Wang ◽  
Ru Lin Peng ◽  
Jonathan Almer ◽  
Magnus Odén ◽  
Y.D. Liu ◽  
...  

Quantitative interpretations of the so-called non-linear lattice strain distributions observed in coatings and thin films are important not only for determining the macro- and microstress fields, but also for inferring the active mechanisms of grain interactions during various deposition processes. In this paper, we present a method, which determines simultaneously both the macro- and micro- stress fields in the coatings and thin films. This method is extended from the previous stress-orientation distribution function (SODF) analysis method, which has already been used for residual stress analysis in bulk materials subjected to rolling and fatigue deformation. The validity of analysis method is demonstrated through measurements of lattice strains by high-energy x-ray and analysis of grain-orientation-dependent stresses in a CrN coating.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


2019 ◽  
Vol 85 (5) ◽  
pp. 28-32
Author(s):  
A. S. Kolyanova ◽  
Y. N. Yaltsev

A calculation method for obtaining the misorientation distribution function (MDF) for cubic crystals which can be used to estimate the presence or absence of special boundaries in the materials is presented. The calculation was carried out for two samples of Al-Mg-Si alloy subjected to various mechanical and thermal treatments: the first sample is subjected to rolling; the second sample is subjected to recrystallization annealing. MDF is calculated for each sample; the results are presented in the Euler space and in the angle-axis space. The novelty of the method consists in the possibility of gaining data on the grain boundaries from X-ray texture analysis without using electron microscopy. A calculation involving only mathematical operations on matrices was performed on the basis of the orientation distribution function restored from incomplete pole figures. It is shown that no special boundaries are observed in the deformed sample, whereas in the recrystallized alloy, special boundaries are detected at Ʃ = 23, 13, and 17. The shortcoming of the proposed method can be attributed to the lack of accurate data on grain boundaries, since all possible orientation in the polycrystal should be taken into account in MDF calculation.


1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


2007 ◽  
Vol 539-543 ◽  
pp. 493-498 ◽  
Author(s):  
Ivan Saxl ◽  
Vàclav Sklenička ◽  
L. Ilucová ◽  
Milan Svoboda ◽  
Petr Král

Considerable structural inhomogeneity and anisotropy were found even after eight ECAP passes in high purity aluminium and the creep loading of ECAP material at 473K, 15MPa resulted in scattered fracture times ~ 20-60 hours. The structure revealed by orientation imaging microscopy with different disclination bounds was analysed by stereological methods. The effect of inhomogeneity and grain orientation on the creep fracture time was assessed.


1999 ◽  
Vol 574 ◽  
Author(s):  
Norifumi Fujimura ◽  
Tamaki Shimura ◽  
Toshifumi Wakano ◽  
Atsushi Ashida ◽  
Taichiro Ito

AbstractWe propose the application of ZnO:X (X = Li, Mg, N, In, Al, Mn, Gd, Yb etc.) films for a monolithic Optical Integrated Circuit (OIC). Since ZnO exhibits excellent piezoelectric effect and has also electro-optic and nonlinear optic effects and the thin films are easily obtained, it has been studied as one of the important thin film wave guide materials especially for an acoustooptic device[1]. In terms of electro-optic and nonlinear optic effects, however, LiNbO3 or LiTaO3 is superior to ZnO. The most important issue of thin film waveguide using such ferroelectrics is optical losses at the film/substrate interface and the film surface, because the process window to control the surface morphology is very narrow due to their high deposition temperature. Since ZnO can be grown at extremely low temperature, the roughness at the surface and the interface is expected to be minimized. This is the absolute requirement especially for waveguide using a blue or ultraviolet laser. Recently, lasing at the wavelength of ultraviolet, ferroelectric and antiferromagnetic behaviors of ZnO doped with various exotic elements (exotic doping) have been reported. This paper discusses the OIC application of ZnO thin films doped with exotic elements.


2008 ◽  
Vol 584-586 ◽  
pp. 343-348 ◽  
Author(s):  
Somjeet Biswas ◽  
Satyaveer Singh Dhinwal ◽  
Ayan Bhowmik ◽  
Satyam Suwas

Commercially Pure Magnesium initially hot rolled and having a basal texture was deformed by Equal Channel Angular Extrusion (ECAE). ECAE was carried out upto 8 passes in a 90° die following routes A and Bc through a processing sequence involving two temperatures, namely 523 and 473 K. Texture and microstructure formed were studied using electron back scatter diffraction (EBSD) technique. In addition to significant reduction in grain size, strong <0002> fiber texture inclined at an angle ~ 45o from the extrusion axis formed in the material. Texture was also analyzed by orientation distribution function (ODF) and compared vis-à-vis shear texture. A significant amount of dynamic recrystallization occurred during ECAE, which apparently did not influence texture.


2018 ◽  
Vol 11 (2) ◽  
pp. 2490-2499 ◽  
Author(s):  
Paul Fassl ◽  
Simon Ternes ◽  
Vincent Lami ◽  
Yuriy Zakharko ◽  
Daniel Heimfarth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document