Design of Transmission Polarization Metasurface Converter

2021 ◽  
Vol 1035 ◽  
pp. 718-723
Author(s):  
Bo Wen Han ◽  
Si Jia Li ◽  
Xiang Yu Cao ◽  
Jun Gao

The transmission polarization metasurface converter is an effective method to realize the polarization manipulation of the transmission waves, and it is also the research hotspot of metasurfaces. A new broadband transmissive polarization converter was proposed based on the metasurfaces converted incident linearly polarized waves into circularly polarized waves of transmission. The top and bottom layers of the unit were axisymmetric metal patches. The top and bottom layers of metal patches were overlapped and the shape was like an arrow. The thickness of the substrate was 4mm. The polarization conversion mechanism of metasurface was illustrated by parameter optimization and current analysis. The simulation results show that when the metasurface works in the frequency band of 6.71GHz~8.45GHz, the linearly polarized incident wave can be converted into a circularly polarized transmitted wave with axial ratio less than 3dB, and the relative bandwidth can reach 23%. The designed polarization converter has a simple structure and the potential application value in electromagnetic wave control of radio frequency devices.

2021 ◽  
Author(s):  
Xinlei Zhang ◽  
Haining Ye ◽  
Yan Zhao ◽  
Haifeng Zhang

Abstract A tunable linear-to-circular polarization converter (LTCPC) for the terahertz (THz) regime which consists of two conductive layers and a graphene transmissive metasurface layer separated by two dielectric layers is reported in this work. The equivalent surface resistance modeling method is adopted to investigate the peculiar electronic properties of graphene. The simulation results show that when the Fermi energy (Ef) is 1.1 eV, the linearly-polarized wave can be transformed into the circularly-polarized wave in the working band ranging from 0.9498 THz to 1.3827 THz (the relative bandwidth is 37.1%) with axial ratio (AR) less than 3 dB. Moreover, the bandwidth can be regulated to the desired one by varying the Fermi level of graphene metasurface via a bias voltage rather than manually modifying the structure. We have analyzed the mechanism of the polarization conversion, especially, the magnitudes and the phase difference of cross- and co-polarization transmission coefficients, AR curves, and surface current diagrams at y-polarized incidence. Our findings open up promising possibilities towards the realization of graphene controllable devices for polarization modulation, which has advantages of adjustability over traditional devices.


2017 ◽  
Vol 10 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Oguzhan Akgol ◽  
Olcay Altintas ◽  
Emin Unal ◽  
Muharrem Karaaslan ◽  
Faruk Karadag

By using a metasurface (MS) structure, a linearly polarized wave is converted to circularly polarized waves. Both right- and left-handed circular polarizations (RHCPs and LHCP) are obtained by a simple configuration in the proposed structure which consists of 16 unit cells arranged in a 4 × 4 layout. Each unit cell contains five horizontal and parallel strips embedded in a rectangular frame in which a single diagonal strip is placed from one corner to the opposed one. It is shown that the orientation of the diagonal line determines the handedness of the converted signal to be either LHCP or RHCP. In order to show the working conditions of the MS structure, scattering parameters are found for both co-polarized and cross-polarized responses. Axial ratio, an indicator for polarization conversion, is then obtained by dividing cross-polar response to co-polar response to demonstrate the transformation. The structure works for horizontally and vertically polarized linear waves in a wide band frequency range which is approximately 510 MHz. Since the suggested MS model is composed of a simple geometry for polarization conversion, it can be easily adjusted in any desired frequency bands for a variety of applications from the defence industry to medical, education, or communication areas.


2019 ◽  
Vol 8 (1) ◽  
pp. 142-149
Author(s):  
Hidayath Mirza ◽  
Ping Jack Soh ◽  
Azremi Abdullah Al-Hadi ◽  
Toufiq Md Hossain ◽  
Rais Ahmad Sheikh ◽  
...  

This paper presents a single layered textile-based flexible linear-to-circular polarizing surface. The proposed structure is designed based on a rectangular ring structure for CubeSat application in the S-band. Each unit cell is sized at 0.35λ×0.33λ×0.2λ for operation centered at 2.2 GHz. This unit cell is then multiplied into a 9x10 array to form the polarizing surface. It features a 3 dB axial ratio bandwidth (ARBW) of 34.73%, with a minimum AR of 0.28 dB. Besides that, it also offers a 90 % conversion efficiency bandwidth of up to 47.34%. The proposed structure’s performance is validated by placing it in front of a patch antenna operating at 2.2 GHz. The antenna performance indicated an increase in terms of gain from 3.14 dBi to 7.33 dBi when integrated with the polarizing surface, besides successfully converting linearly-polarized waves to circularly-polarized.


2019 ◽  
Vol 11 (10) ◽  
pp. 1054-1060
Author(s):  
Kapil Saraswat ◽  
A. R. Harish

AbstractA polarization and band reconfigurable cross-slot antenna for multiband applications is presented in this paper. The antenna consists of four p–i–n diodes embedded in the cross-shaped slot in a ground plane and excited by a microstrip feed line. The p–i–n diodes are placed in such a way that they produce multiple bands, with linearly and circularly polarized (CP) radiation. By switching the states of the p–i–n diodes, the sense of rotation of the electric field in CP radiation can be reconfigured. The proposed structure can be configured to produce two bands that radiate linearly polarized waves or three bands, where, two are linearly polarized and one is CP. The proposed design concepts are validated bythe CST studio suite as well as measurementsare carried out on fabricated prototypes.


Author(s):  
Murari Shaw ◽  
Niranjan Mandal ◽  
Malay Gangopadhyay

Abstract In this paper, a stacked microstrip patch antenna with polarization reconfigurable property has been proposed for worldwide interoperability for microwave access (WiMAX) application. The proposed antenna has two substrate layers: upper and lower layers with two radiating patches connected with the coaxial probe. Without the upper layer the lower square-shaped substrate layer having regular hexagonal radiating patch with probe fed acts as a linear polarized antenna with impedance bandwidth for (S11 ≤ −10 dB) is 370 MHz 10.56% (3.32–3.69 GHz) cover WiMAX (3.4–3.69 GHz) application band. The hexagonal radiating patch is perturbed with an optimum rectangular slot to enhance the impedance bandwidth of the antenna. The lower substrate layer having hexagonal patch with the same probe position is stacked with the upper square-shaped substrate layer with same sized square patch and the upper patch soldered with the coaxial probe. The overall stacked antenna generates a circularly polarized band when the opposite corner of the top square radiating patch of the upper layer is truncated with optimum size. In order to generate another circularly polarized band and to improve the input impedance matching of the stacked antenna, the top radiating patch is perturbed with two slots and a slit. The stacked circularly polarized antenna generates impedance bandwidth of 12.75% (3.23–3.67 GHz) for (S11 ≤ −10 dB) with two circularly polarized bands (3.34–3.37 GHz) and (3.66–3.70 GHz) as per (axial ratio ≤ 3 dB) for WiMAX application. Therefore, the proposed antenna can be used as linearly polarized or dual band circularly polarized according to requirement.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tiiti Kellomäki

When circularly polarized (CP) microstrip antennas are bent, the polarization becomes elliptical. We present a simple model that describes the phenomenon. The two linear modes present in a CP patch are modeled separately and added together to produce CP. Bending distorts the almost-spherical equiphase surface of a linearly polarized patch, which leads to phase imbalance in the far-field of a CP patch. The model predicts both the frequency shifting of the axial ratio band as well as the narrowing of the axial ratio beam. Uncontrolled bending is a problem associated especially with flexible textile antennas, and wearable antennas should therefore be designed somewhat conformal.


2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


Author(s):  
Amrita Gorai ◽  
Bappadittya Roy ◽  
G. K. Mahanti

A compact circularly polarized CPW-fed slot antenna is proposed here. The antenna consists of a pentagonal patch within an asymmetrical slot with a single coplanar waveguide feed. The proposed antenna is excited with CPW feed mechanism and investigated experimentally. The structure is fabricated on FR4 epoxy substrate with a permittivity of 4.4. The impedance bandwidth of 10[Formula: see text]GHz (4[Formula: see text]GHz to 14[Formula: see text]GHz) and the axial ratio bandwidth of 1.2[Formula: see text]GHz with the corresponding fractional bandwidth of 113%. The simulation results fulfil the bandwidth requirements of IEEE 802.11a (5.15–5.35[Formula: see text]GHz/5.47–5.725[Formula: see text]GHz) for wireless applications. In terms of bandwidth, compactness and circular polarization comparable results between simulated and measured results clearly show the validity of the proposed structure.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hong-Yu Shi ◽  
Wei Li ◽  
Shi-Tao Zhu ◽  
Xiao-Li Dong ◽  
An-Xue Zhang ◽  
...  

This paper presents a broadband circular polarizer with a ring/disk cavity structure, which is a broadband application of plasmon hybridizations. The proposed design can convert a linearly polarized wave to a circularly polarized wave from 12.66 GHz to 17.43 GHz within a bandwidth of 30%. The broadband polarization conversion characterization results from the different plasmon hybridization modes induced in the ring/disk cavity. The proposed broadband circular polarizer is demonstrated by both full-wave simulation and measurement.


Sign in / Sign up

Export Citation Format

Share Document