Influence of a Hydrophobic Emulsion on the Surface Properties of Coatings of Water-Dispersion Acrylic Paint

2021 ◽  
Vol 1040 ◽  
pp. 165-171
Author(s):  
Valeria V. Strokova ◽  
Maria V. Nikulina ◽  
Pavel S. Baskakov ◽  
Alina V. Abzalilova ◽  
Anastasia Y. Esina

The existing methods of confering hydrophobic properties to various building materials are considered. Obtaining special, including hydrophobic, properties of water-emulsion paints is a very relevant task. Previously, a method was developed for producing an emulsion of a polysiloxane stabilized with polyvinyl alcohol. The paper describes the possibility of using a hydrophobisating emulsion of polyhydrosiloxane as a functional additive for an acrylic water-dispersion paint. This emulsion is capable of forming coatings on dense and porous surfaces with an adjustable contact angle up to 105 °. The use of this emulsion, with its sufficient coalescence for volumetric hydrophobization of coatings, makes it possible to obtain a high contact angle on the surface. In the paper, it was assumed that the partial introduction of small amounts (up to 10 %) of a hydrophobizing emulsion into water-dispersion paints would allow achieving the contact angle of wetting for similar coatings consisting exclusively of emulsion. It is shown that the introduction of small amounts of a hydrophobizing emulsion with an auxiliary coalescing action of ethylene glycol makes it possible to impart hydrophobic properties to the surface of the resulting coating. When the optimum concentration of ethylene glycol in the coating is reached, dissolution and transport (yield) of polysiloxane to the surface is ensured. The research carried out made it possible to develop a paint composition with a hydrophobizing emulsion with a contact wetting angle of about 100 °, which ensured the hydrophobicity of the previously hydrophilic coating of a water-dispersion acrylic paint.

2021 ◽  
Vol 316 ◽  
pp. 720-725
Author(s):  
Valentina I. Loganina

Information on the effect of organosilicon liquid on the hydrophobic properties of coatings, based on acrylic resin, is presented. It is shown that the value of the contact angle on the anti-icing coating is 151-154 degrees. When moistened for 72 hours, a decrease in the value of the contact angle, especially on the control coating, is 81-103 degrees. However, at the introduction of liquid 136-41, a decrease in the contact angle is insignificant. The surface energy of the coatings was calculated. It was found that the introduction of an organosilicon liquid in an acrylic composition increases the surface energy of the coatings.


Author(s):  
А.Э. Муслимов ◽  
М.Х. Гаджиев ◽  
Р.М. Эмиров ◽  
А.М. Исмаилов ◽  
В.М. Каневский

Effect of nitrogen plasma composition on structural-phase and elemental composition, topography, mechanical and hydrophobic properties of coatings on the basis of nitrogen-containing titanium oxide during penetration onto sample in open atmosphere is studied. It has been shown that at an equally high microhardness of the order of 25-27 GPa, by controlling the composition of the nitrogen plasma, either hydrophilic (contact angle 73 °) or hydrophobic coatings (contact angle 120 °) can be formed.


2018 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Romaya Sitha Silitonga ◽  
Nurul Widiastuti ◽  
Juhana Jaafar ◽  
Ahmad Fauzi Ismail ◽  
Muhammad Nidzhom Zainol Abidin ◽  
...  

Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed that the modified membrane has a peak at 1655 cm-1, indicating the imine group (–N=C)- that was formed due to the crosslink between amine group from chitosan and aldehyde group from glutaraldehyde. Results showed that the contact angle of the modified membrane decreases to 77.22° indicated that the membrane hydrophilic properties (< 90°) were enhanced. Prior to the modification, the contact angle of the PVDF membrane was 90.24°, which shows hydrophobic properties (> 90°). The results of porosity, Ɛ (%) for unmodified PVDF membrane was 55.39%, while the modified PVDF membrane has a porosity of 81.99%. Similarly, by modifying the PVDF membrane, pure water flux increased from 0.9867 L/m2h to 1.1253 L/m2h. The enhancement of porosity and pure water flux for the modified PVDF membrane was due to the improved surface hydrophilicity of PVDF membrane.


2021 ◽  
Vol 324 ◽  
pp. 3-8
Author(s):  
Konstantine V. Nadaraia ◽  
Dmitry V. Mashtalyar ◽  
Sergey N. Suchkov ◽  
Vera V. Mostovaya ◽  
Igor M. Imshinetskiy ◽  
...  

The thermal stability of the superhydrophobic properties of coatings obtained on a magnesium alloy by plasma electrolytic oxidation (PEO) followed by treatment with fluoropolymer was studied. It was established that formed surface layers have contact angle (CA) equal to 171° and contact angle hysteresis equal to 6° at 25 °C, which allows to characterize them as superhydrophobic. After 5 cycles of cooling-heating of composite layers, CA was 135°, indicating the durability of coatings. Additionally, obtained polymer-containing layers demonstrated low wettability at 0 °C (CA was 105°).


2020 ◽  
Vol 71 (4) ◽  
pp. 403-409
Author(s):  
Mehrnaz Akbarnezhad ◽  
Davood Rasouli ◽  
Hossein Yousefi ◽  
Mahdi Mashkour

In this study, the effect of UV stabilizers (dihydroxy benzophenone and nano zinc oxide) on the weathering degradation of water-based acrylic coating on beech wood was investigated. The wood specimens were coated by brush and then weathered naturally for six months. The obtained results showed that the use of nano zinc oxide reduced color changes and mold growth on the surface of weathered samples. However, the results of contact angle, pull-off adhesion, colorimeter and FTIR revealed that the dihydroxyl benzophenone was not effective in preventing weathering degradation of coated wood.


1975 ◽  
Vol 51 (3) ◽  
pp. 540-542 ◽  
Author(s):  
Ayao Kitahara ◽  
Masami Fujiwara ◽  
Tetsuo Ogawa ◽  
Tadashi Ishibashi

2014 ◽  
Vol 34 (3) ◽  
pp. 209-217
Author(s):  
Hsing-Chung Cheng ◽  
Wan-Tin Lin ◽  
Yung-Kang Shen ◽  
Yen-Hsiang Wang

Abstract The traditional orthodontic power chain, usually made of polymer materials, exists some drawbacks, such as the reduction of elasticity due to swell after absorbing water and surface discoloration resulting from the patient’s diet, food, or beverage colors leading to poor appearance. The main purpose of this study was to develop surface modification on orthodontic power chain and to realize the properties change for improvement of its shortcomings. In this study, a template was produced by pure aluminum piece with anodized production (concave) through the nanoimprinting process fabricating nanostructures (convex) on the surface of power chain, resulting in surface modification of power chain. The different nanoimprinting process parameters (e.g., imprinting temperature, imprinting pressure, imprinting time, and demolding temperature) were used to produce nanostructures on the surface of power chain. The results of this study show that the contact angle of the power chain became larger after nanoimprinting surface treatment. The hydrophilic properties of power chain have been turned into hydrophobic properties. Unmodified power chain before water absorption is about 4%, while a modified water absorbance is about 2%–4%.


Author(s):  
M.A. Bolzinger ◽  
C. Cogne ◽  
L. Lafferrere ◽  
F. Salvatori ◽  
P. Ardaud ◽  
...  

2016 ◽  
Vol 4 (15) ◽  
pp. 5632-5638 ◽  
Author(s):  
Jian He ◽  
Xiaolei Li ◽  
Dong Su ◽  
Huiming Ji ◽  
Xing Zhang ◽  
...  

Hexamethyl-disilazane (HMDS) is introduced to replace the hydroxyl groups of ZrO2–SiO2 aerogels (ZSAs) to form inert methyl siloxy surface groups and produce SiO2 particles as the “pinning” particles in air at elevated temperatures. Thus, HMDS/ZSAs exhibit an excellent thermal stability and super-hydrophobic properties with a contact angle of 154°.


Author(s):  
В. Логанина ◽  
Valentina Loganina ◽  
С. Кислицына ◽  
Svetlana Kislicyna ◽  
К. Сергеева ◽  
...  

The information about the composition of the anti-icing coating is provided. The use of acrylic resin A-01 and DEGALAN®, highly chlorinated polyethylene resin HCPE and silicone resin SILRES® MSE 100 as a binder is considered. The regularities of changes in viscosity of the composition depending on volume content of the filler – Aerosil brand R 972 are revealed. It is found that the viscosity increase is insignificant when filling in the range 0<φ<0.012. With further filling (φ>0,012) there is a significant change in the ratio of the volume and membranous phases of the matrix, there is a sharp increase in the viscosity of the composition. The optimal volumetric composition of the filler is established for each type of the resin. It is revealed that the interaction in the filler-filler system prevails over the interaction in the filler-binder system. In assessing the hydrophobic properties, it is found that the coatings have a high contact angle (more than 150°), and the roll-off angle does not exceed 10°, which confirms the presence of superhydrophobicity and assumes anti-icing properties of the coatings. The adhesion of the coating to the substrate estimated by the lattice incision method on the mortar and metal substrates is 1 point. Smooth and clear cuts without chipping and cracking are marked at 4x magnification


Sign in / Sign up

Export Citation Format

Share Document