Microstructure and Texture Evolution during Continuous Dynamic Recrystallization at Warm Deformation of Titanium

2004 ◽  
Vol 467-470 ◽  
pp. 1211-1216 ◽  
Author(s):  
S.Yu. Mironov ◽  
Gennady A. Salishchev ◽  
Sergey V. Zherebtsov

The microstructure and texture evolutions in pure titanium during severe plastic deformation at T=400°C were investigated. Compressive deformation of prismatic samples was sequentially applied in three orthogonal directions up to 12 steps and a strain at each step of 40%. A radical microstructure refinement (from 20 to 0.2 µm) during strain has been found. The features of the deformation structure are a high level of internal stresses, high density of dislocations, a large number of deformation induced boundaries and the presence of twins. It is shown that during strain there is a significant change in disorientation angles and axes of individual high angle grain boundaries. At the same time the total set of high angle boundaries - Misorientation Distribution Function (MDF) and texture - does not change significantly with strain. The reasons for the change in disorientation angles and axes at new deformation-induced boundaries during plastic flow are discussed.

2007 ◽  
Vol 558-559 ◽  
pp. 497-504
Author(s):  
Beitallah Eghbali

Warm deformation is one of the promising hot rolling strategies for producing thin hot rolled steel strips. A better understanding of the microstructure evolution during warm deformation is important for a successful introduction of such processing into the industrial production. In the present research, the effect of deformation strain on the ferrite microstructure development in a low carbon Ti-microalloyed steel was investigated through warm torsion testing. Microstructural analysis with optical microscope and electron back-scattering diffraction was carried out on the warm deformed ferrite microstructures. The results show that at the early stage of deformation an unstable subboundaries network forms and low angle boundaries are introduced in the original grains. Then, with further straining, low angle boundaries transform into high angle boundaries and stable fine equiaxed ferrite grains form. It was considered that dynamic softening and dynamically formation of new fine ferrite grains, with high angle boundaries, were caused by continuous dynamic recrystallization of ferrite.


2004 ◽  
Vol 467-470 ◽  
pp. 1145-1150 ◽  
Author(s):  
S.R. Barrabes ◽  
M.E. Kassner ◽  
Maria Teresa Pérez-Prado ◽  
E. Evangelista

The micron-size grain refinement of pure a-zirconium obtained with elevated temperature tensile deformation was investigated. The development of low-misorientation subboundaries caused the serration of the original grain boundaries at low strains. The final microstructure (e.g. strains > 3) was predominantly composed of fine, equiaxed “crystallites” with ⅔ of the boundaries being of very low misorientations (< 3°) and the remaining ⅓ being high angle boundaries (θ > 8°, and typically 25-35°). Discontinuous dynamic recrystallization was excluded as a possible mechanism due to the absence of newly formed grain nuclei. The bimodal distribution of the crystallite or (sub)grain boundary misorientations is inconsistent with the occurrence of continuous dynamic recrystallization and rotational recrystallization. The continual thinning of the original grains, the serration of the high angle boundaries, the bimodal misorientation distribution of misorientations, ⅔ of boundaries of very low misorientations at high strains all strongly suggest geometric dynamic recrystallization and dynamic recovery as the grain refinement and restoration mechanisms.


2010 ◽  
Vol 667-669 ◽  
pp. 439-444
Author(s):  
Sergey V. Zherebtsov ◽  
Egor A. Kudryavtsev ◽  
Gennady A. Salishchev

Mechanical behavior and microstructure evolution of commercial pure titanium during successive compressions of samples along three orthogonal directions (or so-called “abc” deformation) at 400°C and strain rate 10-3s-1 were studied. The cumulative S- curve demonstrates a steady state flow stage following the intensive strengthening. The microstructure evolution of titanium during first increments of “abc” deformation is associated with twinning and shear deformation. Further deformation results in microstructure refinement due to transformation of coincidence site lattice twin boundaries to high-angle arbitrary ones and formation of high-angle deformation induced boundaries. Another mechanism of new grains formation is continuous dynamic recrystallization.


2005 ◽  
Vol 475-479 ◽  
pp. 2995-2998
Author(s):  
Jian Ting Guo ◽  
Rong Shi Chen ◽  
Xing Hao Du ◽  
Gu Song Li ◽  
Lan Zhang Zhou

The microstructural evolution during superplastic deformation of the extruded stoichiometric NiAl polycrystals were systemically investigated in various conditions of temperature, strain rate and strain by means of optical microscopy (OM) and transmission electron microscopy (TEM). Consequently, The deformation microstructures corresponding to the large tensile elongation consisted of subgrains, low angle grains as well as high angle grains, which indicated that continuous dynamic recrystallization (CDRX) process was operating during superplastic deformation.


2014 ◽  
Vol 783-786 ◽  
pp. 2641-2646 ◽  
Author(s):  
Rustam Kaibyshev ◽  
Sergey Malopheyev ◽  
Vladislav Kulitskiy ◽  
Marat Gazizov

The mechanism of grain refinement in an Al-5.4Mg-0.4Mn-0.2Sc-0.09Zr alloy subjected to equal-channel angular pressing (ECAP) at 300°C through route BC is considered. It was shown that the formation of geometrically necessary boundaries (GNB) aligned with a {111} plane at ε≤1 initiates the occurrence of continuous dynamic recrystallization (CDRX). Upon further strain the GNBs transform to low-to-moderate angle planar boundaries that produces lamellar structure. In the strain interval 2-4, 3D arrays of planar boundaries evolve due to inducing the formation of 2nd order and higher orders families of GNBs in new {111} planes. GNBs gradually convert to high-angle boundaries (HAB) with strain. A uniform recrystallized structure is produced at a true strain of ∼8. The role of slip concentration and shearing patterns in the formation of GNBs is discussed.


2018 ◽  
Vol 941 ◽  
pp. 1443-1449 ◽  
Author(s):  
María Cecilia Poletti ◽  
Ricardo Buzolin ◽  
Sanjev Kumar ◽  
Peng Wang ◽  
Thierry Franz Jules Simonet-Fotso

This work deals with the analysis and modelling of the microstructural evolution of the metastable titanium alloy Ti-5Al-5V-5Mo-3Cr during hot deformation up to moderate and large strains. Experimental flow curves and deformed samples are obtained by hot compression and hot torsion tests using a Gleeble ® 3800 device. The samples are deformed above and below the beta transus temperature and in a wide range of strain rates. Microstructures are characterized after deformation and in-situ water quenching using light optical and scanning electron microscopy and electron back scattered diffraction (EBSD). Dynamic recovery of the beta phase is found to be the main deformation mechanism up to moderated strains. By increasing the strain, continuous dynamic recrystallization (cDRX) is confirmed by the progressive conversion of low angle boundaries into high-angle boundaries. Alpha phase plays a secondary role in the deformation of the material by pinning the movement of beta high angle grain boundaries (HAGB). The evolution of the microstructure is modelled using dislocation density as internal variable in the single β field.


2007 ◽  
Vol 546-549 ◽  
pp. 1297-1300 ◽  
Author(s):  
Y. Wang ◽  
Wen Zhu Shao ◽  
Liang Zhen ◽  
L. Lin ◽  
Y.X. Cui

The nucleation and development of dynamic recrystallization (DRX) in hot deformed superalloy Inconel 718 during uniaxial compression were investigated by optical microscopy and electron back-scattered diffraction (EBSD) technique. The results showed that the discontinuous dynamic recrystallization was the predominant DRX mechanism in this alloy. The variations of partial crystallographic orientations led to the individual nucleation inside the deformed grains, which implied the occurrence of local continuous dynamic recrystallization. The progressive subgrain rotation can be confirmed neither near the prior high angle grain boundaries nor within the original grains. It was found that, as the strain increased, the initial twin boundaries were gradually transformed to ordinary mobile high angle boundaries. Meanwhile, the new twin boundaries were formed inside the recrystallized grain necklaces. It was suggested that the characteristics of the twin boundaries evolution with increasing strain were associated with the transformation of initial twin boundaries as well as the generation of new ones, which resulted in the development of DRX.


2005 ◽  
Vol 475-479 ◽  
pp. 145-148 ◽  
Author(s):  
Jae-Young An ◽  
Suk Min Han ◽  
Young Jae Kwon ◽  
Yeon Chul Yoo

The high temperature deformation behavior of AISI 430 ferritic stainless steel has been studied over a temperature range of 800 to 1000°C and strain rate of 0.05-5.0/sec. The evolution of flow stress and microstructures showed the characteristics of continuous dynamic recrystallization (CDRX). The flow stress curves gradually decreased with increasing strain over the peak stress until 500% of strain without any steady state shown in typical austenitic stainless steel. Sub-grains of low angle firstly formed along the original high angle grain boundary were propagated into the inside of original grain and transformed to high angle. The CDRX grain sizes of AISI 430 deformed at 1000 °C and 0.5/sec was about 30-35㎛.


2012 ◽  
Vol 706-709 ◽  
pp. 2326-2331 ◽  
Author(s):  
Marina Tikhonova ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The dynamic process of grain evolution in an S304H-type austenitic stainless steel was studied in multiple forging tests at temperatures of 500°C, 600°C and 700°C. The deformation microstructure with a grain size of about 100 to 400 nm resulted from continuous dynamic recrystallization. The size of new grains and the recrystallization kinetics decreased with decreasing the deformation temperature. The dynamically equilibrium grain size evolved at large strains followed a power law function of the flow stress with a grain size exponent of about-0.2. The formation of new fine grains was assisted by dynamic recovery, which leads to an apparent steady state flow at large total strains.


2011 ◽  
Vol 409 ◽  
pp. 41-46
Author(s):  
Marat Gazizov ◽  
Rustam Kaibyshev

A novel Al-Cu-Mg-Ag alloy with small additions of zirconium and scandium was subjected to equal channel angular pressing (ECAP) by using route BC at 300°C to strains ranging from ~1 to ~12. Initially, the alloy was subjected to solution treatment followed by water quenching; subsequent overageing was carried out at 380°C for 3 h. It was shown that continuous dynamic recrystallization (CDRX) occurs during ECAP resulting in partially recrystallized structure; at a total strain of ~12, the portion of high-angle boundaries (HAB) attains 50 pct., average misorientation is ~25°. Crystallites having elongated shape and an average size of ~1 μm are evolved after a total strain of ~12.


Sign in / Sign up

Export Citation Format

Share Document