Optimization of the Fabrication Parameters of PZT 52/48 Thin Films by Pulsed Laser Ablation

2006 ◽  
Vol 514-516 ◽  
pp. 1353-1357 ◽  
Author(s):  
José R. A. Fernandes ◽  
Ednan Joanni ◽  
Raluca Savu

Thin films of PbZr0,52Ti0,48O3 (PZT) for applications in piezoelectric actuators were deposited by the pulsed laser deposition technique (PLD) over Pt/Ti/SiO2/Si substrates. The effect of different electrode and PZT deposition and processing conditions on the ferroelectric and piezoelectric properties of the devices was investigated. X-Ray diffraction results showed that the deposition temperature for the electrodes had a strong influence on the PZT orientation; the increase in the electrode deposition temperature changes the PZT orientation from random or (111) to (001) depending also on PZT deposition pressure. From scanning electron microscope (SEM) pictures one could also observe that the deposition pressure affects the porosity of the PZT films, which increases with the pressure above 1×10-1 mbar for films deposited at room temperature. The measurement of the ferroelectric hysteresis curves confirmed that the structural changes induced by different processing parameters affected the ferroelectric properties of the material. The best ferroelectric properties including fatigue endurance were obtained for electrodes made at high temperature and for PZT deposited at 2×10-2 mbar and heat treated at 675°C for 30 minutes in an oxygen atmosphere. The piezoelectric coefficient d33, measured using a Michelson interferometer, had values in the range between 20 and 60 pm/V, and showed a strong dependence on the thickness of the PZT films.

1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
T. Zheleva ◽  
A. Morimoto ◽  
V.N. Shukla ◽  
J. Narayan

ABSTRACTWe have fabricated high-quality <001> textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (001)Si with interposing <001> textured YBa2Cu3O7−δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers using pulsed laser deposition (KrF excimer laser, λ=248 nm, τ=20 nanoseconds). The YBCO layer provides a seed for PZT growth and can also act as an electrode for the PZT films, whereas YSZ provides a diffusion barrier as well as a seed for the growth of YBCO films on (001)Si. These heterostructures were characterized using X-ray diffraction, high-resolution transmission electron microscopy and Rutherford backscattering techniques. The YSZ films were deposited in oxygen ambient (∼9X10−4 torr) at 775°C on (001)Si substrate having <001>YSZ// <001>Si texture. The YBCO thin films were deposited in-situ in oxygen ambient (200 mtorr) at 650°C. Temperature and oxygen ambient for the PZT deposition were optimized to be 530°C and 0.4–0.6 torr, respectively. The laser fluence to deposit this multistructure was 2.5–5.0 J/cm2. The <001> textured perovskite PZT films showed a dielectric constant of 800–1000, a saturation polarization of 37.81 μC/cm2, remnant polarization of 24.38 μC/cm2 and a coersive field of 125 kV/cm. The effects of processing parameters on microstructure and ferroelectric properties of PZT films and device implications of these structures are discussed.


1996 ◽  
Vol 433 ◽  
Author(s):  
Daesig Kim ◽  
Tae-Young Kim ◽  
June Key Lee ◽  
W. Tao ◽  
Seshu B. Desu

AbstractIt was shown that Pb(ZrxTi1−x)O3 thin films (PZT) can be successfully deposited by metalorganic chemical vapor deposition (MOCVD) in a wide deposition temperature range starting from 400°C to 600°C. Variations in texture, morphology and grain size of the films as a function of process parameters were systematically investigated by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The deposition temperature and gas composition in the reactor are the two key parameters that control the film microstructure. The accompanying changes in the ferroelectric properties with respect to the variations of the process parameters will also investigated. In addition, we found an interrelationship between the grain orientation and surface roughness of the films. Films with (111) preferred orientation are significantly smoother than the films with other preferred orientations. We also demonstrate, for the first time, fine grained PZT films with very low surface roughness, which show excellent electrical properties can be obtained by lowering the deposition temperature (e.g. 430°C)


2003 ◽  
Vol 83 (26) ◽  
pp. 5500-5502 ◽  
Author(s):  
J.-R. Duclère ◽  
M. Guilloux-Viry ◽  
V. Bouquet ◽  
A. Perrin ◽  
E. Cattan ◽  
...  

2021 ◽  
Author(s):  
Robynne Lynne PALDI ◽  
Xing Sun ◽  
Xin Li Phuah ◽  
Juanjuan Lu ◽  
Xinghang Zhang ◽  
...  

Self-assembled oxide-metallic alloyed nanopillars as hybrid plasmonic metamaterials (e.g., ZnO-AgxAu1-x) in a thin film form are grown using a pulsed laser deposition method. The hybrid films were demonstrated to be...


2004 ◽  
Vol 84 (7) ◽  
pp. 1165-1167 ◽  
Author(s):  
A. R. James ◽  
Chandra Prakash

1991 ◽  
Vol 243 ◽  
Author(s):  
C. K. Chiang ◽  
W. Wong-Ng ◽  
L. P. Cook ◽  
P. K. Schenck ◽  
H. M. Lee ◽  
...  

AbstractPZT thin films were prepared by pulsed laser deposition on unheated Ptcoated Si substrates. As deposited, the films were amorphous. Films crystallized at 550 - 600 °C to produce predominantly crystalline ferroelectric PZT. Crystallization of the amorphous material was accompanied by a linear shrinkage of ∼2 %, as manifested in development of cracks in the film. Spacing, width and morphology of larger cracks followed a regular progression with decreasing film thickness. For film thicknesses less than 500 runm, much of the shrinkage was taken up by small, closely-spaced cracks of local extent. Implications for measurement of PZT thin film ferroelectric properties and processing are discussed.


2006 ◽  
Vol 306-308 ◽  
pp. 1313-1318
Author(s):  
J.S. Kim ◽  
B.H. Park ◽  
T.J. Choi ◽  
Se Hyun Shin ◽  
Jae Chul Lee ◽  
...  

Pb0.65Ba0.35ZrO3 (PBZ) thin films have been grown on MgO (001) substrates by pulsed-laser deposition (PLD). We have compared the structural and dielectric properties of PBZ films grown at various temperatures. A highly c-axis orientation has appeared at PBZ film grown at the deposition temperature of 550oC. The c-axis oriented PBZ film has also shown the largest tunability among all the PBZ films in capacitance-voltage measurements. The tunability and dielectric loss of the PBZ film was 20% and 0.00959, respectively. In addition, we have compared the temperature coefficient of capacitance (TCC) of a PBZ film with that of a Ba0.5Sr0.5TiO3 (BST) film which is a well-known material applicable to tunable microwave devices. We have confirmed that TCC value of a PBZ thin film was three-times smaller than that of a BST thin film.


2014 ◽  
Vol 633 ◽  
pp. 378-381
Author(s):  
Bei Li ◽  
X.B. Liu ◽  
M. Chen ◽  
X.A. Mei

Dy-doped Bi4Ti3O12 thin films were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition technique, and the structures and electrical properties of the films were investigated. XRD results indicated that all of Bi4-xDyxTi3O12 films consisted of single phase of a bismuth-layered structure with well-developed rod-like grains. The remanent polarization ( Pr ) and coercive field (Ec) of the Bi4-xDyxTi3O12 Film with x=0.75 were 25μC/cm2 and 85KV/cm , respectively.


2000 ◽  
Vol 655 ◽  
Author(s):  
S.B. Majumder ◽  
B. Perez ◽  
B. Roy ◽  
A. Martinez ◽  
R.S. Katiyar

AbstractElectrical characteristics of ferroelectric thin films in planar electrode configuration are important to characterize these materials for their applications in micro electro mechanical (MEM) and tunable microwave devices. In the present work we have prepared polycrystalline Pb1划3x/2Ndx(Zr0.53Ti0.47)O3 (x = 0.0 to 10.0 at %) thin films on platinized silicon substrate by chemical solution deposition (CSD) technique. The films were characterized in terms of their dielectric and ferroelectric properties by depositing planar interdigital finger electrodes on the surface of the films by electron beam lithography. The capacitance and loss tangent of undoped and 4 at % Nd doped PZT films measured at 100 kHz were found to be 138 pF, 0.033 and 95 pF, 0.019 respectively. Saturated hysteresis loops were obtained in undoped PZT film by applying 100 V across 10 μm electrode separation. Nd doped PZT films on the other hand, electrically shorted at comparatively lower voltage. The electrical characteristics of these films are correlated with their phase formation behavior and microstructural features.


Sign in / Sign up

Export Citation Format

Share Document