Investigation of the Mechanism and Growth Kinetics of Homoepitaxial 4H-SiC Growth Using CH3Cl Carbon Precursor

2006 ◽  
Vol 527-529 ◽  
pp. 171-174 ◽  
Author(s):  
Huang De Lin ◽  
Jeffery L. Wyatt ◽  
Yaroslav Koshka

In this work, the mechanism of the epitaxial growth of 4H SiC using CH3Cl as the carbon source gas was investigated. The experiments were conducted with a H2 carrier gas flow rate reduced in comparison to the standard conditions used for device-quality, full-wafer C3H8 growth. Low-H2 conditions have been found favorable for investigating the differences between the two gas systems. A non-linear trend of the growth rate dependence on CH3Cl flow was observed. This dependence was quantitatively different for C3H8 growth, which serves as an indication of different kinetics of CH3Cl and C3H8 precursor decomposition, as well as differences in Si droplet formation and dissociation. The maximum growth rate that we were able to achieve was by a factor of two higher for the CH3Cl precursor than for the C3H8 precursor at the same temperature and flow conditions. The growth on lower off-axis angle substrates produced surface morphology degradation similar for both CH3Cl and C3H8 precursor systems.

2016 ◽  
Vol 74 (9) ◽  
pp. 2124-2134 ◽  
Author(s):  
Matthew Dubois Frigon ◽  
Dongfang Liu

Yeast activated sludge was developed and operated at salinities of 0, 15, 30, 45, and 60 g/l NaCl. The kinetics of the various sludges degrading a wastewater with glycerol as the carbon source were determined. Inhibition due to salinity was analyzed and it was found that the limiting concentration of NaCl is 120 g/l. Salinity affects the maximum growth rate of the sludge. Reactors were exposed to shock salinity changes. Salt shocks affected maximum growth rate of the reactors but treatment was still effective. The effect of pH adjustment was investigated and it was determined that hourly adjustments of pH led to the most effective treatment outcomes. Finally, DNA of the reactors was investigated. Although Scheffersomyces spartinae (Debaryomycetaceae family) was clearly more suited to the high salinity environment than other yeast species, even at high salinity the number of species was diverse. This suggests the potential to use a number of yeast species for high salinity wastewater treatment.


2004 ◽  
Vol 50 (4) ◽  
pp. 341-349 ◽  
Author(s):  
W. Yang ◽  
J. Vollertsen ◽  
T. Hvitved-Jacobsen

Anoxic processes can effectively control odour and corrosion in sewer networks. However, the absence of fundamental knowledge on the kinetics of anoxic transformation of sewage prevents the engineering applications of anoxic control in sewers. This paper focuss on a basic understanding of the anoxic transformations needed for a conceptual simulation of the water phase processes. Experiments conducted in batch reactors have shown that nitrite builds up in wastewater during denitrification. Part of the nitrate-reducing biomass is capable of utilizing nitrite after nitrate is depleted. Compared with aerobic transformation, anoxic processes have low values of maximum growth rate of the biomass and also a low endogenous respiration rate. Heterotrophic yield determined under anoxic conditions, at level of 0.25 mmol e-eq (mmol e-eq)-1, accounted for less than 40% of the corresponding aerobic values.


1989 ◽  
Vol 4 (1) ◽  
pp. 204-214 ◽  
Author(s):  
H. S. Kong ◽  
J. T. Glass ◽  
R. F. Davis

Beta–SiC thin films have been epitaxially grown on 6H–SiC {0001} substrates via chemical vapor deposition (CVD). The growth rate increased linearly with the source/carrier gas flow rate ratio. The activation energy for the growth of β–SiC grown on the Si face of the 6H–SiC substrate was 12 Kcal/mole. These observations are consistent with a surface reaction-controlled process. The as-grown surface morphology is dependent on the terminal layer of the substrate, the growth temperature, and the source/carrier gas flow rate ratio. The C face of a 6H–SiC {0001} substrate caused a higher growth rate and thus poorer surface morphology than the Si face under the same growth conditions. The optimum temperature range for growth of a flat, mirror-like β–SiC surface was determined to be 1773–1823 K in the present CVD system. The microstructure and nucleation of double positioning boundaries were investigated via transmission and scanning electron microscopies. Triangular defects and their modifications were also observed, and their origins have been discussed.


2007 ◽  
Vol 556-557 ◽  
pp. 81-84
Author(s):  
Masahiko Ito ◽  
Hidekazu Tsuchida ◽  
Isaho Kamata ◽  
L. Storasta

A vertical hot-wall type reactor, with a unique structure designed for controlling both gas flow behavior and thermal gradient (T/mm) on the susceptor surface, was developed. The simulation results indicate that depending on the height of the epitaxy room (h), the T/mm can be changed from a negative to a positive value. Preliminary epitaxial growth experiments resulted in a maximum growth rate of 51 μm/h, 4-inch area uniformity of σ/mean=1.7% for growth rate and σ/mean=21.5 % for doping concentration, and Z1/2 trap concentration of 9×1012 cm-3 at a growth rate of 43 μm/h.


2008 ◽  
Vol 273-276 ◽  
pp. 679-684
Author(s):  
Roberto Parreiras Tavares ◽  
André Afonso Nascimento ◽  
Henrique Loures Vale Pujatti

The RH process is a secondary refining process that can simultaneously attain significant levels of removal of interstitial elements, such as carbon, nitrogen and hydrogen, from liquid steel. In the RH process, the decarburization rate plays a very important role in determining the productivity of the equipment. The kinetics of this reaction is controlled by mass transfer in the liquid phase. In the present work, a physical model of a RH degasser has been built and used in the study of the kinetics of decarburization. The effects of the gas flow rate and of the configurations of the nozzles used in the injection of the gas have been analyzed. The decarburization reaction of liquid steel was simulated using a reaction involving CO2 and caustic solutions. The concentration of CO2 in the solution was evaluated using pH measurements. Based on the experimental results, it was possible to estimate the reaction rate constant. A volumetric mass transfer coefficient was then calculated based on these rate constants and on the circulation rate of the liquid. The logarithm of the mass transfer coefficient showed a linear relationship with the logarithm of the gas flow rate. The slope of the line was found to vary according to the relevance of the reaction at the free surface in the vacuum chamber. A linear relationship between the volumetric mass transfer coefficient and the nozzle Reynolds number was also observed. The slopes of the lines changed according to the relative importance of the two reaction sites, gas-liquid interface in the upleg snorkel and in the vacuum. At higher Reynolds number, the reaction in the vacuum chamber tends to be more significant.


1993 ◽  
Vol 57 (2) ◽  
pp. 332-334 ◽  
Author(s):  
A. Blasco ◽  
E. Gómez

Two synthetic lines of rabbits were used in the experiment. Line V, selected on litter size, and line R, selected on growth rate. Ninety-six animals were randomly collected from 48 litters, taking a male and a female each time. Richards and Gompertz growth curves were fitted. Sexual dimorphism appeared in the line V but not in the R. Values for b and k were similar in all curves. Maximum growth rate took place in weeks 7 to 8. A break due to weaning could be observed in weeks 4 to 5. Although there is a remarkable similarity of the values of all the parameters using data from the first 20 weeks only, the higher standard errors on adult weight would make 30 weeks the preferable time to take data for live-weight growth curves.


1978 ◽  
Vol 14 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. L. Monteith

SUMMARYFigures for maximum crop growth rates, reviewed by Gifford (1974), suggest that the productivity of C3 and C4 species is almost indistinguishable. However, close inspection of these figures at source and correspondence with several authors revealed a number of errors. When all unreliable figures were discarded, the maximum growth rate for C3 stands fell in the range 34–39 g m−2 d−1 compared with 50–54 g m−2 d−1 for C4 stands. Maximum growth rates averaged over the whole growing season showed a similar difference: 13 g m−2 d−1 for C3 and 22 g m−2 d−1 for C4. These figures correspond to photosynthetic efficiencies of approximately 1·4 and 2·0%.


2004 ◽  
Vol 831 ◽  
Author(s):  
E. Berkman ◽  
R. Collazo ◽  
R. Schlesser ◽  
Z. Sitar

ABSTRACTGallium nitride (GaN) films were grown on (0001) sapphire substrates at 1050°C by controlled evaporation of gallium (Ga) metal and reaction with ammonia (NH3) at a total reactor pressure of 800 Torr. Pure nitrogen (N2) was flowed directly above the molten Ga source to prevented direct reaction between the molten Ga and ammonia, which causes Ga spattering and GaN crust formation. At the same time, this substantially enhanced the Ga transport to the substrate. A simple mass-transport model based on total reactor pressure, gas flow rates and source temperature was developed and verified. The theoretical calculations and growth rate measurements at different ammonia flow rates and reactor pressures showed that the maximum growth rate was controlled by transport of both Ga species and reactive ammonia to the substrate surface.


1992 ◽  
Vol 25 (6) ◽  
pp. 167-183 ◽  
Author(s):  
H. Siegrist ◽  
M. Tschui

The wastewater of the municipal treatment plants Zürich-Werdhölzli (350000 population equivalents), Zürich-Glatt (110000), and Wattwil (20000) have been characterized with regard to the activated sludge model Nr.1 of the IAWPRC task group. Zürich-Glatt and Wattwil are partly nitrifying treatment plants and Zürich-Werdhölzli is fully nitrifying. The mixing characteristics of the aeration tanks at Werdhölzli and Glatt were determined with sodium bromide as a tracer. The experimental data were used to calibrate hydrolysis, heterotrophic growth and nitrification. Problems arising by calibrating hydrolysis of the paniculate material and by measuring oxygen consumption of heterotrophic and nitrifying microorganisms are discussed. For hydrolysis the experimental data indicate first-order kinetics. For nitrification a maximum growth rate of 0.40±0.07 d−1, corresponding to an observed growth rate of 0.26±0.04 d−1 was calculated at 10°C. The half velocity constant found for 12 and 20°C was 2 mg NH4-N/l. The calibrated model was verified with experimental dam of me Zürich-Werdhölzli treatment plant during ammonia shock load.


Sign in / Sign up

Export Citation Format

Share Document