Investigation of TiW Contacts to 4H-SiC Bipolar Junction Devices

2006 ◽  
Vol 527-529 ◽  
pp. 887-890
Author(s):  
Hyung Seok Lee ◽  
Martin Domeij ◽  
Carl Mikael Zetterling ◽  
Mikael Östling ◽  
Jun Lu

One important challenge in SiC Bipolar Junction Transistor (BJT) fabrication is to form good ohmic contacts to both n-type and p-type SiC. In this paper, we have examined contact study in a SiC BJT process with sputter deposition of titanium tungsten contacts to both n-type and p-type regions followed by annealing at different temperatures between 750 oC and 950 oC. The contacts were characterized using linear transmission line method (LTLM) structures. To see the formation of compound phases, X-ray Diffraction (XRD) θ-2θ scans were performed before and after annealing. The results indicate that 5 minutes annealing at 950 oC of the n+ contact is sufficient whereas the p+ contacts remain non-ohmic after 30 minutes annealing. The n+ emitter structure contact resistivity after 5 min annealing with 750 oC and 950 oC was 1.08 × 10-3 5cm2 and 4.08 × 10-4 5cm2, respectively. Small amorphous regions of silicon and carbon as well as titanium tungsten carbide regions were observed by high-resolution transmission electron microscopy (HRTEM), whereas less carbide formation and no amorphous regions were found in a sample with unsuccessful formation of TiW ohmic contacts.

1993 ◽  
Vol 300 ◽  
Author(s):  
E. Kamińska ◽  
A. Piotrowska ◽  
E. Mizera ◽  
R. Zarecka ◽  
J. Adamczewska ◽  
...  

ABSTRACTThe reactions between (100) GaAs and Au, Zn, and Au(Zn) ohmic contact metallization have been investigated by the use of transmission electron microscopy and x-ray diffraction. Emphasis is placed on the particular role of Zn during consecutive stages of the formation of an ohmic contact to p-GaAs. The most significant feature of the interaction of Zn with GaAs is the penetration of Zn atoms into the native oxide, which remains at the surface of GaAs after chemical treatment. Moreover, the presence of Zn in Au-based metallization is found to considerably suppress the thermally induced growth of metallization grains, making the microstructure of the contact virtually intact upon annealing at temperatures up to 460°C.


2017 ◽  
Vol 897 ◽  
pp. 395-398 ◽  
Author(s):  
Yi Dan Tang ◽  
Hua Jun Shen ◽  
Xu Fang Zhang ◽  
Fei Guo ◽  
Yun Bai ◽  
...  

Ti/Al contacts deposited on p-type epilayer doped with Al at 2×1019 cm-3 are reported. The current-voltage curves of Ti/Al contacts annealed at different temperatures from 800 to 1000 °C were measured, which provided the specific contact resistances (SCRs) of 6.59×10-5 Ω/cm2 and 7.81×10-5Ω/cm2 after annealing at 900°C for 5min and 950°C for 2min, respectively. The microstructures of Ti/Al contact on P-type 4H–SiC were investigated by X-ray diffraction (XRD). The results of XRD show that the phases of Ti3SiC2 was formed at the metal/SiC interface after annealing, which could be effective to ohmic contacts on P-type 4H-SiC. The quantitative phase analysis were also discussed, which show that the phase composition of Ti3SiC2is key factor for low resistance to P-type 4H–SiC. Moreover, simulations proved that the gradual Ti3SiC2ISL reduces or eliminates the effective barrier height at the metal/Ti3SiC2/p-type and may also contribute to low contact resistivity.


2022 ◽  
Author(s):  
Qi Zheng ◽  
Rong Yang ◽  
Kang Wu ◽  
Xiao Lin ◽  
Shixuan Du ◽  
...  

Abstract We report a facile phase conversion method that can locally convert n-type SnSe2 into p-type SnSe by direct laser irradiation. Raman spectra of SnSe2 flakes before and after laser irradiation confirm the phase conversion of SnSe2 to SnSe. By performing the laser irradiation on SnSe2 flakes at different temperatures, it is found that laser heating effect induces the removal of Se atoms from SnSe2 and results in the phase conversion of SnSe2 to SnSe. Lattice-revolved transmission electron microscope images of SnSe2 flakes before and after laser irradiation further confirm such conversion. By selective laser irradiation on SnSe2 flakes, a pattern with SnSe2/SnSe heteostructures is created. This indicates that the laser induced phase conversion technique has relatively high spatial resolution and enables the creation of micron-sized in-plane p-n junction at predefined region.


2017 ◽  
Vol 13 (2) ◽  
pp. 4640-4647
Author(s):  
A. M. Abdelghany ◽  
M.S. Meikhail ◽  
S.I. Badr ◽  
A. S. Momen

Thin film samples of pristine polyvinyl chloride (PVC), poly vinyldine fluoride (PVDF) in combination with their blend in addition to samples containing factorial mass fraction of multi wall carbon nano-tubes (MWCNTs) in the dopant level were prepared via routine casting technique using tetrahydrofurane (THF) as a common solvent. X-ray diffraction and transmission electron microscopy (TEM) depict the nano-scale (15-25 nm) of functionalized MWCNTs with no surface damage results from functionalization process.X-ray diffraction (XRD) shows a semi-crystalline nature of PVDF with evidence for more than one phase namely a and b phases. The fraction of b phase was calculated and correlated to the dopant content. FTIR optical absorption spectra revels a preservation of the main vibrational bands before and after addition of MWCNTs in the doping level with a presence of new small band 1151 cm-1 assigned for the interaction and complexation between constituents.


1996 ◽  
Vol 449 ◽  
Author(s):  
P. Kung ◽  
A. Saxler ◽  
D. Walker ◽  
X. Zhang ◽  
R. Lavado ◽  
...  

ABSTRACTWe present the metalorganic chemical vapor deposition growth, n-type and p-type doping and characterization of AlxGa1-xN alloys on sapphire substrates. We report the fabrication of Bragg reflectors and the demonstration of two dimensional electron gas structures using AlxGa1-xN high quality films. We report the structural characterization of the AlxGa1-xN / GaN multilayer structures and superlattices through X-ray diffraction and transmission electron microscopy. A density of screw and mixed threading dislocations as low as 107 cm-2 was estimated in AlxGa1-xN / GaN structures. The realization of AlxGa1-xN based UV photodetectors with tailored cut-off wavelengths from 365 to 200 nm are presented.


2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mashael Alshabanat ◽  
Amal Al-Arrash ◽  
Waffa Mekhamer

Polymer nanocomposites of polystyrene matrix containing 10% wt of organo-montmorillonite (organo-MMT) were prepared using the solution method with sonication times of 0.5, 1, 1.5, and 2 hours. Cetyltrimethylammonium bromide (CTAB) is used to modify the montmorillonite clay after saturating its surface with Na+ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the montmorillonite before and after modification by CTAB. The prepared nanocomposites were characterized using the same analysis methods. These results confirm the intercalation of PS in the interlamellar spaces of organo-MMT with a very small quantity of exfoliation of the silicate layers within the PS matrix of all samples at all studied times of sonication. The thermal stability of the nanocomposites was measured using thermogravimetric analysis (TGA). The results show clear improvement, and the effects of sonication time are noted.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Marcelo Rizzo Piton ◽  
Teemu Hakkarainen ◽  
Joonas Hilska ◽  
Eero Koivusalo ◽  
Donald Lupo ◽  
...  

AbstractThe performance of Ohmic contacts applied to semiconductor nanowires (NWs) is an important aspect for enabling their use in electronic or optoelectronic devices. Due to the small dimensions and specific surface orientation of NWs, the standard processing technology widely developed for planar heterostructures cannot be directly applied. Here, we report on the fabrication and optimization of Pt/Ti/Pt/Au Ohmic contacts for p-type GaAs nanowires grown by molecular beam epitaxy. The devices were characterized by current–voltage (IV) measurements. The linearity of the IV characteristics curves of individual nanowires was optimized by adjusting the layout of the contact metal layers, the surface treatment prior to metal evaporation, and post-processing thermal annealing. Our results reveal that the contact resistance is remarkably decreased when a Pt layer is deposited on the GaAs nanowire prior to the traditional Ti/Pt/Au multilayer layout used for p-type planar GaAs. These findings are explained by an improved quality of the metal-GaAs interface, which was evidenced by grazing incidence X-ray diffraction measurements in similar metallic thin films deposited on GaAs (110) substrates. In particular, we show that Ti exhibits low degree of crystallinity when deposited on GaAs (110) surface which directly affects the contact resistance of the NW devices. The deposition of a thin Pt layer on the NWs prior to Ti/Pt/Au results in a 95% decrease in the total electrical resistance of Be-doped GaAs NWs which is associated to the higher degree of crystallinity of Pt than Ti when deposited directly on GaAs (110).


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thuy-Chinh Nguyen ◽  
Tien-Dung Nguyen ◽  
Duc-Toan Vu ◽  
Duc-Phuong Dinh ◽  
Anh-Hiep Nguyen ◽  
...  

This paper presents some characteristics, properties, and morphology of TiO2 nanoparticles (nano-TiO2) modified with various contents of 3-(trimethoxysilyl)propyl methacrylate (TMSPM) coupling agent. The treatment process was carried out in ethanol solvent at 50oC using ammonia as a catalyst for hydrolysis reaction of silane to silanol. Infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, ultraviolet-visible spectroscopy, and X-ray diffraction methods were used for determination of the characteristics, properties of nano-TiO2 before and after treatment. In addition, the contact angle and grafting efficiency of TMSPM on the surface of TiO2 nanoparticles was also evaluated. The obtained results confirmed that TMSPM was grafted to the TiO2 nanoparticles, the agglomeration of nano-TiO2 was decreased, and surface of TiO2 nanoparticles became hydrophobic after modification by TMSPM.


Sign in / Sign up

Export Citation Format

Share Document