Effect of Strontium on Mechanical Properties and Corrosion Resistance of AZ91D

2007 ◽  
Vol 546-549 ◽  
pp. 567-570 ◽  
Author(s):  
Yu Fan ◽  
Guo Hua Wu ◽  
Chun Quan Zhai

With adding 2% strontium in AZ91D, the ultimate tensile strength and the elongation increased by 10.3% and 55.3%, respectively. This is mainly caused by the refinement of the β phase and the formation of Al4Sr strengthening phase. Furthermore, with adding 2% strontium in AZ91D alloy, the weight loss corrosion rate in 5wt.% NaCl solution decreases to 0.048 mg·cm-2·d-1, which was 33.8 % of the AZ91D corrosion rate. Therefore, the mechanical properties and corrosion resistance of AZ91D could be improved by the addition of 2% strontium, which is due to the refinement of Mg17Al12 phase and the formation of Al4Sr phase.

2021 ◽  
Vol 2144 (1) ◽  
pp. 012010
Author(s):  
S V Zasypkin ◽  
A O Cheretaeva ◽  
M R Shafeev ◽  
D L Merson ◽  
M M Krishtal

Abstract The effect of heat treatment on the mechanical properties (hardness, plasticity, yield and tensile strength) and corrosion resistance of several cast magnesium alloys with additions of rare earth metals (Y, Nd and Gd), and their surface modification by plasma electrolytic oxidation (PEO) were investigated. It was found that the heat treatment of the alloys results information of Mg12YZn, Mg3Zn3Y2 and Mg24Y5 based LPSO-phases and causes an increase in hardness and tensile strength by 5-7 and 20-25%, respectively, but at the same time, corrosion resistance of the alloysdrops by 10-20 times. PEO of the alloys after heat treatment reduced the corrosion currents by 1-3 orders of magnitude without changing the corrosion potential.


2019 ◽  
Vol 55 (7) ◽  
pp. 1341-1344
Author(s):  
V. V. Dushik ◽  
G. V. Redkina ◽  
N. V. Rozhanskii ◽  
T. V. Rybkina ◽  
V. P. Kuzmin ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1212
Author(s):  
Xiong ◽  
Yang ◽  
Deng ◽  
Li ◽  
Li ◽  
...  

The effect of Ca addition on the microstructure, mechanical properties, and corrosion behaviors of the extruded Mg–7Li–3Al alloys was investigated. The results showed that the extruded Mg–7Li–3Al–xCa alloys consisted of α-Mg (hcp) + β-Li (bcc) matrix phases and Al2Ca. With increasing Ca content, the amount and morphology of the Al2Ca phase changed significantly. The grains of the extruded Mg–7Li–3Al–xCa alloys were refined by dynamic recrystallization during the extrusion process. The tensile tests results indicated that the extruded Mg–7Li–3Al–0.4Ca alloy exhibited favorable comprehensive mechanical properties; its ultimate tensile strength was 286 MPa, the yield strength was 249 MPa, and the elongation was 18.7%. The corrosion results showed that this alloy with 0.4 wt.% Ca addition exhibited superior corrosion resistance, with a corrosion potential Ecorr of −1.48742 VVSE, attributed to the formation of protective Al2Ca phases.


2017 ◽  
Vol 17 (2) ◽  
pp. 125-130 ◽  
Author(s):  
M. Uludağ ◽  
M. Kocabaş ◽  
D. Dışpınar ◽  
R. Çetin ◽  
N. Cansever

AbstractIn the present study, the corrosion behaviour of A356 (Al-7Si-0.3Mg) alloy in 3.5% NaCl solution has been evaluated using cyclic/potentiodynamic polarization tests. The alloy was provided in the unmodified form and it was then modified with AlTi5B1 for grain refinement and with AlSr15 for Si modifications. These modifications yield to better mechanical properties. Tensile tests were performed. In addition, bifilm index and SDAS values were calculated and microstructure of the samples was investigated. As a result of the corrosion test, the Ecorr values for all conditions were determined approximately equal, and the samples were pitted rapidly. The degassing of the melt decreased the bifilm index (i.e. higher melt quality) and thereby the corrosion resistance was increased. The lowest corrosion rate was founded at degassing and as-received condition (3.9x10-3mm/year). However, additive elements do not show the effect which degassing process shows.


Author(s):  
Edgar Lara-Curzio ◽  
R. Trejo ◽  
K. L. More ◽  
P. J. Maziasz ◽  
B. A. Pint

The effects of stress, temperature and time of exposure to microturbine exhaust gases on the mechanical properties and corrosion resistance of alloys HR-120® and 230® was investigated at turbine exhaust temperatures between 620°C and 760°C. It was found that the ultimate tensile strength and ductility of alloy 230® decreased by 30% and 60%, respectively, after 500 hours exposure at 752°C. At the lowest exposure temperature of 679°C the ultimate tensile strength and ductility decreased by 10% and 25%, respectively. The ultimate tensile strength and ductility of HR-120® alloy decreased by 15% and 50%, respectively, after 500 hours exposure at 745°C. At the lowest exposure temperature of 632°C the ultimate tensile strength and ductility decreased by 10% and 23%, respectively. The microstructural changes associated with exposure to microturbine exhaust gases are analyzed and discussed.


2011 ◽  
Vol 418-420 ◽  
pp. 451-454
Author(s):  
Li Ping ◽  
Wang Ying

The corrosion behavior of reinforcing bar HRB400 in simulated concrete solution (0.5 wt.% NaCl solution) was investigated, and its tensile mechanical properties were tested before and after corrosion. The results show that, with the increase of corrosion time from 240h to 720h, the corrosion rate increases and the corrosion becomes heavier and heavier, and the composition amounts of corrosion scale are similar. After 720h, the yield strength and tensile strength are decreased by less than 10%, and the elongation are decreased by more than 20%.


2005 ◽  
Vol 488-489 ◽  
pp. 869-872 ◽  
Author(s):  
Yu Fan ◽  
Guo Hua Wu ◽  
Hong Tao Gao ◽  
Chun Quan Zhai

The effects of RE and Ca on the mechanical properties and corrosion behavior of AZ91 have been studied by Zwick electronic universal material testing machine, X-ray diffraction, corrosion test and polarization experiment. The results showed that the addition of RE and Ca could improve the mechanical properties and corrosion resistance of AZ91 alloys. The ultimate tensile strength of AZ91 with addition of 1%RE and 1%Ca increased by 15.9%. The addition of 1%RE in AZ91 made the corrosion rate decrease from 0.453mg·cm-2·d-1 to 0.178mg·cm-2·d-1. Furthermore, with adding 1%Ca in AZ91+1%RE, the corrosion rate of AZ91 decreased to 0.086mg·cm-2·d-1 due to the formation of reticular Al2Ca phases, which acts as an effective barrier against corrosion.


2014 ◽  
Vol 953-954 ◽  
pp. 1492-1495
Author(s):  
Ping Li

The corrosion rates of rebar HRB400 in 0.5 wt.% NaCl solution were measured, and the mechanical properties before and after corrosion were tested. The results showed that, with the increase of corrosion time, the corrosion rate of rebar HRB400 increases and the corrosion becomes heavier. Meanwhile, the yield strength and tensile strength decrease, but the elongation decreases at first and then increases.


2006 ◽  
Vol 510-511 ◽  
pp. 374-377 ◽  
Author(s):  
Jeong Min Kim ◽  
Bong Koo Park ◽  
Joong Hwan Jun ◽  
Ki Tae Kim ◽  
Woon Jae Jung

Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the microstructure, mechanical properties and corrosion resistance were investigated. The microstucture of the investigated alloys could be characterized by dendritic Mg, Mg17Al12, a quasi-crystalline Zn-rich phase, and Al4RE (if RE is added). Although the tensile strength of alloys was not improved, the creep strength was significantly enhanced by the additions of minor alloying elements. No apparent influence of the additions could be found on the corrosion resistance.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1564 ◽  
Author(s):  
Huai Yao ◽  
Jiuba Wen ◽  
Yi Xiong ◽  
Ya Liu ◽  
Yan Lu ◽  
...  

The Mg–Zn–Zr–Gd alloys belong to a group of biometallic alloys suitable for bone substitution. While biocompatibility arises from the harmlessness of the metals, the biocorrosion behavior and its origins remain elusive. Here, aiming for the tailored biodegradability, we prepared the Mg–2.0Zn–0.5Zr–xGd (wt %) alloys with different Gd percentages (x = 0, 1, 2, 3, 4, 5), and studied their microstructures and biocorrosion behavior. Results showed that adding a moderate amount of Gd into Mg–2.0Zn–0.5Zr alloys will refine and homogenize α-Mg grains, change the morphology and distribution of (Mg, Zn)3Gd, and lead to enhancement of mechanical properties and anticorrosive performance. At the optimized content of 3.0%, the fishbone-shaped network, ellipsoidal, and rod-like (Mg, Zn)3Gd phase turns up, along with the 14H-type long period stacking ordered (14H-LPSO) structures decorated with nanoscale rod-like (Mg, Zn)3Gd phases. The 14H-LPSO structure only exists when x ≥ 3.0, and its content increases with the Gd content. The Mg–2.0Zn–0.5Zr–3.0Gd alloy possesses a better ultimate tensile strength of 204 ± 3 MPa, yield strength of 155 ± 3 MPa, and elongation of 10.6 ± 0.6%. Corrosion tests verified that the Mg–2.0Zn–0.5Zr–3.0Gd alloy possesses the best corrosion resistance and uniform corrosion mode. The microstructure impacts on the corrosion resistance were also studied.


Sign in / Sign up

Export Citation Format

Share Document