Mechanical Properties of Nano-Laminar Glass/Metal Composite

2007 ◽  
Vol 561-565 ◽  
pp. 733-736 ◽  
Author(s):  
Hideki Kakisawa ◽  
Taro Sumitomo ◽  
Yusuke Owaki ◽  
Yutaka Kagawa

A nano-laminar glass/metal composite was fabricated. Glass flake powder coated with silver was used as the raw material, and was sintered by hotpressing. Samples fabricated in the optimum condition had a dense, laminar microstructure originating from the aligned flake powder. The result of a three-point bending test for the samples suggested that the alignment of the powder was essential for fracture behavior: When the powder was aligned in advance during the green sample fabrication, the sample fractured stably after the maximum load, while the samples fabricated by simple hotpressing of the powder without pre-alignment fractured unstably. Work of fracture of the sample in which the powder was well aligned was measured with chevron notched specimens; a significantly high value of about 300J/mm2 was obtained.

2016 ◽  
Vol 258 ◽  
pp. 623-626 ◽  
Author(s):  
Vlastimil Bílek Jr. ◽  
Hana Šimonová ◽  
Ivana Havlíková ◽  
Libor Topolář ◽  
Barbara Kucharczyková ◽  
...  

The aim of this paper is to quantify mechanical fracture and length change parameters of the two types of concrete with alkali activated binder. The six beam specimens (75 × 75 × 295 mm) were made from each mixture. After demolding specimens were placed in air storage for 28 days. During this period length change (shrinkage) were recorded in accordance with ASTM C490 (2011). After that the three-point bending test was performed on these specimens with initial stress concentrator at the age of 28 days to obtain the mechanical fracture parameters. Records of fracture tests in form load versus deflection (F–d) diagrams were evaluated using effective crack model and work of fracture method.


2016 ◽  
Vol 827 ◽  
pp. 287-291 ◽  
Author(s):  
Ivana Havlíková ◽  
Petr Frantík ◽  
Pavel Schmid ◽  
Hana Šimonová ◽  
Václav Veselý ◽  
...  

Records of fracture tests on steel fibre reinforced concrete notched specimens in a three-point bending configuration are evaluated in detail and selected results are discussed in the paper. The values of fracture parameters are determined using work of fracture method and double-K fracture model. Primarily, the role of plain concrete as a matrix in steel fibre reinforced concrete specimens is studied with regard to the recorded fracture response.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1503 ◽  
Author(s):  
Przemysław Mania ◽  
Filip Siuda ◽  
Edward Roszyk

The aim of the presented study is to determine the relationship between mechanical parameters of selected wood species (Carya sp., Fagus sylvatica L., Acer platanoides L., Fraxinus excelsior L., Ulmus minor Mill.) used for the production of hand tools and drumsticks and the grain deviation angle from the rectilinear pattern. Modulus of rupture (MOR), modulus of elasticity (MOE), elastic strain and work to maximum load (WML) in the three-point bending test were determined. The results obtained show that the values of all the mechanical parameters measured for hickory wood are higher than those obtained for domestic species. As the grain deviation angle from parallelism increases, the mechanical properties of all analyzed wood species decrease. The greatest influence of grain deviation angle on mechanical parameters was recorded for the work to maximum load values.


2011 ◽  
Vol 57 (2) ◽  
pp. 227-246 ◽  
Author(s):  
T. Zdeb ◽  
J. Sliwinski

Abstract The paper deals with the properties and microstructure of Reactive Powder Concrete (RPC), which was developed at Cracow University of Technology. The influence of three different curing conditions: water (W), steam (S) and autoclave (A) and also steel fibres content on selected properties of RPC was analyzed. The composite characterized by w/s ratio equal to 0.20 and silica fume to cement ratio 20%, depending on curing conditions and fibres content, obtained compressive strength was in the range from 200 to 315 MPa, while modulus of elasticity determined during compression was about 50 GPa. During three-point bending test load-deflection curves were registered. Base on aforementioned measurements following parameters were calculated: flexural strength, stress at limit of proportionality (LOP), stress at modulus of rapture (MOR), work of fracture (WF), and toughness indices I5, I10 and I20. Both amount of steel fibres and curing conditions influence the deflection of RPC during bending.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3895-3906
Author(s):  
Hideaki Sugino ◽  
Soichi Tanaka ◽  
Yuga Kasamatsu ◽  
Satoko Okubayashi ◽  
Masako Seki ◽  
...  

In the flow forming technique of wood, a wood block is flowed into metal dies to mold the material into a three-dimensional complex shape. The purpose of this study was to investigate the effect of molding load and the mechanical properties of the molded material in the case that wood as a raw material was irradiated with electron beam (EB). The EB-irradiated wood board was impregnated with thermosetting resin and was subsequently molded into the material by adding pressure and heating in a closed metal die. It was found that the molding load of the impregnated wood was decreased with increasing the EB absorbed dose. The mechanical properties of the molded material were evaluated using modulus of elasticity (MOE) and modulus of rupture (MOR) in a three-point bending test. With increasing EB dose, MOR decreased greatly, while MOE decreased slightly. The EB irradiation on raw wood made it possible to mold the material at low load, though higher dose irradiation caused larger decreases in the mechanical properties.


2010 ◽  
Vol 97-101 ◽  
pp. 7-10
Author(s):  
Shahrum Abdullah ◽  
Mohd Faridz Mod Yunoh ◽  
Azman Jalar

This paper discusses some issues in micromechanical property of a newly developed Quad Flat No-lead (QFN) 3D stacked die package using three-point bending test approach. The relevant test methodologies were carried out in order to observe the flexural stress, strain, maximum load and deflection of the package. While performing the test, these QFN packages were positioned on the three points test bench, and the specific applied load was then applied and moved down until the package was clearly bent and broken. The related findings indicated that the maximum load was found to be at 251.52 N and the maximum deflection was obtained at 0.41 mm. The results were important for setting related testing parameters (load, stress and strain) before applying the three point cyclic bending test on the QFN stacked die package as the future work.


2012 ◽  
Vol 512-515 ◽  
pp. 484-489 ◽  
Author(s):  
Wei Xin Li ◽  
Ying Lu ◽  
Ping Gen Rao ◽  
Xiu Lin Huang

A kind of laminated composite named Al2O3/Nylon/Al with high work of fracture was prepared by a simple process using epoxy resin adhesives as binder in a leaky mold at a pressure of 5 MPa. Light microscopy and scanning electron microscopy were employed to observe the microstructures and crack propagation of the laminated composites. The flexural strength and fracture toughness were measured through three-point bending test, and the work of fracture of the laminated composite was calculated from load-displacement curves of three-point bending test. The experimental results show the composite have low Young's modulus and flexural strength, however, the work of fracture of the laminated composite appears to be high of 2850 J/m2, and the fracture toughness reaches about 11 MPa•m1/2. Analysis of microstructure and crack propagation reveals that the failure of the laminated composite exhibit distinctive characteristic.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2015 ◽  
Vol 1100 ◽  
pp. 152-155
Author(s):  
Libor Topolář ◽  
Hana Šimonová ◽  
Petr Misák

This paper reports the analysis of acoustic emission signals captured during three-point bending fracture tests of concrete specimens with different mixture composition. Acoustic emission is an experimental tool well suited for monitoring fracture processes in material. The typical acoustic emission patterns were identified in the acoustic emission records for three different concrete mixtures to further describe the under-the-stress behaviour and failure development. An understanding of microstructure–performance relationships is the key to true understanding of material behaviour. The acoustic emission results are accompanied by fracture parameters determined via evaluation of load versus deflection diagrams recorded during three-point bending fracture tests.


2021 ◽  
Vol 55 ◽  
pp. 1114-1121
Author(s):  
Daniel Jindra ◽  
Zdeněk Kala ◽  
Jiří Kala ◽  
Stanislav Seitl

Sign in / Sign up

Export Citation Format

Share Document