scholarly journals Effect of Slope Grain on Mechanical Properties of Different Wood Species

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1503 ◽  
Author(s):  
Przemysław Mania ◽  
Filip Siuda ◽  
Edward Roszyk

The aim of the presented study is to determine the relationship between mechanical parameters of selected wood species (Carya sp., Fagus sylvatica L., Acer platanoides L., Fraxinus excelsior L., Ulmus minor Mill.) used for the production of hand tools and drumsticks and the grain deviation angle from the rectilinear pattern. Modulus of rupture (MOR), modulus of elasticity (MOE), elastic strain and work to maximum load (WML) in the three-point bending test were determined. The results obtained show that the values of all the mechanical parameters measured for hickory wood are higher than those obtained for domestic species. As the grain deviation angle from parallelism increases, the mechanical properties of all analyzed wood species decrease. The greatest influence of grain deviation angle on mechanical parameters was recorded for the work to maximum load values.

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3895-3906
Author(s):  
Hideaki Sugino ◽  
Soichi Tanaka ◽  
Yuga Kasamatsu ◽  
Satoko Okubayashi ◽  
Masako Seki ◽  
...  

In the flow forming technique of wood, a wood block is flowed into metal dies to mold the material into a three-dimensional complex shape. The purpose of this study was to investigate the effect of molding load and the mechanical properties of the molded material in the case that wood as a raw material was irradiated with electron beam (EB). The EB-irradiated wood board was impregnated with thermosetting resin and was subsequently molded into the material by adding pressure and heating in a closed metal die. It was found that the molding load of the impregnated wood was decreased with increasing the EB absorbed dose. The mechanical properties of the molded material were evaluated using modulus of elasticity (MOE) and modulus of rupture (MOR) in a three-point bending test. With increasing EB dose, MOR decreased greatly, while MOE decreased slightly. The EB irradiation on raw wood made it possible to mold the material at low load, though higher dose irradiation caused larger decreases in the mechanical properties.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2015 ◽  
Vol 719-720 ◽  
pp. 187-192
Author(s):  
Heru Purnomo ◽  
Rahmat N.D. Syah ◽  
Mochammad R. Syaifulloh ◽  
Srikandi W. Arini ◽  
Essy Arijoeni Basoenondo ◽  
...  

The paper discusses strength-time relation of unfired soil-lime bricks in presence of different water content of soil as one of principal materials for the brick making. Two batches of soil-lime bricks were made with a mixture of lime, soil and water with a mass proportion of 1: 5.7: 1. Water contents of the first and second batch of soil are 30% and 40.581% respectively. Both batches of brick underwent compression and three point bending test. Absorption and physical change of bricks were also evaluated. Experimental investigation reveals that for both batches of bricks, up to 90 days compressive strength decreases a little but modulus of rupture rapidly decreases with time. The study shows that unfired soil-lime bricks with lower soil water content resulted in better strength performances compared to those with higher soil water content.


2010 ◽  
Vol 113-116 ◽  
pp. 2145-2149
Author(s):  
Ying Cheng Hu ◽  
Jin Li ◽  
Fang Chao Cheng ◽  
Xu Jie Zhang

This study mainly analyzed the factors that affected the mechanical properties of laminated veneer lumber(LVL). To increase the mechanical properties, metal mesh was inserted into LVL that made of fast-growing timber. Effects of different factors were evaluated on the mechanical properties of LVL, several enhancement modes of metal mesh were designed to reinforce the LVL. Then, the mechanical properties (modulus of rupture and modulus of elasticity) of the LVL specimens were measured by static bending test. The results of different enhancement modes were analyzed and compared to investigate the effects of different factors. The position of metal mesh and the mesh number of metal mesh make significant effects on the MOE; the type of metal mesh and the angle of metal mesh-wood grain do not have any obvious effects on the MOE. The type of metal mesh and the position of metal mesh make significant effects on the MOR; the mesh number of metal mesh and the angle of metal mesh-wood grain do not have any obvious effects on the MOR.


2007 ◽  
Vol 14 (04) ◽  
pp. 817-820
Author(s):  
MIN HUANG ◽  
KE-ZHI LI ◽  
HE-JUN LI ◽  
QIAN-GANG FU ◽  
GUO-DONG SUN

SiC coating for carbon/carbon composites was prepared by pack cementation method. The effects of coating process on the microstructure and the mechanical properties of C / C composites were analyzed by SEM and three-point bending test, respectively. As the infiltrated Si improved the interfaces bonding during the coating process, the flexural strength and flexural modulus of SiC -coated carbon/carbon composites were both increased by about 10% than the naked C / C composites. In addition, the mechanism of the change of failure mode of SiC coated C / C composites and naked C / C composites was addressed.


2007 ◽  
Vol 537-538 ◽  
pp. 41-46 ◽  
Author(s):  
László Kuzsella ◽  
Imre Szabó

The wood is one of the most favourable structural material. It appears on all fields of the ordinary life. It is difficult to say an application where the wood is not used due to its cheap price, availability and just simply the beauty. Beside of the wide range of process technologies a new process appeared. This process changes the properties of the material and brings many new applications to this traditional material. This process is the compression of the structural wood material. This publication deals with the effect of the compression on the mechanical properties of two hardwoods (beech: fagus sylvatica, oak: quercus) by the help of the three-point bending test and the Charpy impact test.


2015 ◽  
Vol 40 (2) ◽  
pp. 181-189 ◽  
Author(s):  
M D'Amario ◽  
F De Angelis ◽  
M Vadini ◽  
N Marchili ◽  
S Mummolo ◽  
...  

SUMMARY The aim of this study was to assess the flexural strength, flexural elastic modulus and Vickers microhardness of three resin composites prepared at room temperature or cured after one or repeated preheating cycles to a temperature of 39°C. Three resin composites were evaluated: Enamel Plus HFO (Micerium), Opallis (FGM), and Ceram X Duo (Dentsply DeTrey). For each trial, one group of specimens of each material was fabricated under ambient laboratory conditions, whereas in the other groups, the composites were cured after 1, 10, 20, 30, or 40 preheating cycles to a temperature of 39°C in a preheating device. Ten rectangular prismatic specimens (25 × 2 × 2 mm) were prepared for each group (N=180; n=10) and subjected to a three-point bending test for flexural strength and flexural modulus evaluation. Vickers microhardness was assessed on 10 cylindrical specimens from each group (N=180; n=10). Statistical analysis showed that, regardless of the material, the number of heating cycles was not a significant factor and was unable to influence the three mechanical properties tested. However, a significant main effect of the employed material on the marginal means of the three dependent variables was detected.


Sign in / Sign up

Export Citation Format

Share Document