A Ni/Surface-Modified Diamond Composite Electroplating Coating on Superelastic NiTi Alloy as Potential Dental Bur Design

2009 ◽  
Vol 610-613 ◽  
pp. 1339-1342 ◽  
Author(s):  
Hui Min Zhou ◽  
Qing Fen Li ◽  
Li Li ◽  
Yu Feng Zheng

Dental diamond bur is now a regular rotary tool, with its head made of diamond particles embedded into nickel coating, and its shank made of stainless steel. There are strong demands from the dentist on prolongation of usage life and avoiding of breakage. To solve this problem, on the one hand, since diamond is hard to be wetted under the condition of normal temperature and pressure due to the high interfacial energy between diamond and general metals and alloys. Diamond particles coated with titanium layer was used for the preparation of composite electroplating with the intention of improving the interfacial adhesion between diamond and metal matrix; on the other hand, superelastic biomedical NiTi alloy was used as the substrate to improve the flexibility and prevent the breakage. In this study, the optimal preparation parameters of Ni/surface-modified diamond electroplating were determined by orthogonal test, and the bonding conditions between the diamond particles and the NiTi alloy substrate were studied by scanning electron microscope. Further performance comparison of Ni/modified and Ni/un-modified diamond composite electroplating was conducted on a pin-on-disc wear machine under the dry sliding condition, and the material removal volume was used as the evaluating criterion of wear resistance. The results showed that the binding strength between diamond particles and NiTi alloy substrate could be enhanced, as well as the wear resistance, which may give direction on the future design of dental bur.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


Author(s):  
Fathima Banu Raza ◽  
Anand Kumar

The o-rings in ball retained overdentures deteriorate with time and need replacement to restore the retentive quality. We evaluated retrospectively the mechanical properties of o-rings after 3 years in function in one and two-piece implant-supported overdentures. The o-rings were retrieved from one-piece (Myriad snap, Equinox-Straumann, 3.3 x 13mm) and two-piece (Neo Biotech, 3.3 x 13mm) implant-supported overdenture patients. A total of 16 pairs of matrices were tested for wear, type of damage and elasticity using Pin on Disc method, USB Digital Camera in 30x zoom and Universal Tensile Machine respectively. The statistical analysis for independent groups were done with the Mann-Whitney U test. Assessment of used O-rings showed 84% more wear in the two-piece system with an abrasive type of damage while 46% wear in the one-piece system with a compressive type of damage. The o-rings in one-piece system showed increase in elongation and maximum displacement to 2% and 7% respectively, while two-piece system showed decrease in elongation and maximum displacement by 13% and 6% respectively. In one-piece system, the loss of retention was more with slow wear rate and in two-piece system, the wear resistance of O-rings decreased due to increased stiffness. Further studies to evaluate the changes in O-ring with increased sample size and at interval 1 year will pave way for insight into the progressive changes in the mechanical properties of an O-ring.


2013 ◽  
Vol 652-654 ◽  
pp. 1862-1865
Author(s):  
Hua Chen ◽  
Hai Ying Sun ◽  
Su Qiu Jia

Ni-P diamond particles (20μm) composite coating on friction shims were prepared by electroless plating. Morphology and phase composition of the composite coating were measured by SEM with EDS and XRD. The friction coefficient of the coating was test with scratch test. The results showed that diamond particles distribution was uniform and not stacked by two steps for 10 min. The diamond particles were half embedded in the Ni-P substrate. The element of the coating was Ni,P,C and the phase composition was Ni and diamond. Adhesion of the composite coating was higher than that of the Ni-P coating. Friction coefficients of the Ni-P coating and Ni-P composite coating were 0.47 and 0.18. Half –naked diamond particles played a pinning role and prevented from wear of the coating to get the big friction coefficient and good wear resistance. This Ni-P composite coating on friction shims would improve friction shims technology and realize the production of localization of friction shims.


Author(s):  
Yan Zhang ◽  
DeShui Yu ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract To avoid the formation of Ti-Ni intermetallics in a joint, three laser welding processes for Ti alloy–NiTi alloy joints were introduced. Sample A was formed while a laser acted at the Ti alloy–NiTi alloy interface, and the joint fractured along the weld centre line immediately after welding without filler metal. Sample B was formed while the laser acted on a Cu interlayer. The average tensile strength of sample B was 216 MPa. Sample C was formed while the laser acted 1.2 mm on the Ti alloy side. The one-pass welding process involved the creation of a joint with one fusion weld and one diffusion weld separated by the remaining unmelted Ti alloy. The mechanical performance of sample C was determined by the diffusion weld formed at the Ti alloy–NiTi alloy interface with a tensile strength of 256 MPa.


Author(s):  
Shingo Iwatani ◽  
Yasuhito Ogata ◽  
Keisuke Uenishi ◽  
Kojiro F. Kobayashi ◽  
Akihiko Tsuboi

In order to improve a wear resistance of aluminium alloy, we proposed a diode laser cladding on the surface of a A5052 aluminium alloy. Firstly, an applicability of diode laser to laser cladding was evaluated. In this result, application of diode laser made it possible to obtain stable beads in low heat input compared with CO2 laser. According to the increase in aluminium content in the obtained clad layer, the microstructure of the clad layer changed as γ (8∼20%) → γ + α (10∼30%) → Fe3Al (30%∼). At the interface between the clad layer and the aluminium alloy substrate, the reaction layer consisting of Fe2Al5 and FeAl3 formed. In the abrasion wear the obtained clad layers exhibited a higher wear resistance compared with the aluminium alloy.


Wear ◽  
2000 ◽  
Vol 239 (1) ◽  
pp. 111-116 ◽  
Author(s):  
V.V.N Reddy ◽  
B Ramamoorthy ◽  
P.Kesavan Nair

2015 ◽  
Vol 787 ◽  
pp. 421-425
Author(s):  
A. Vignesh ◽  
V.G. Vijay Prakaash ◽  
A.K. Lakshminarayanan

An attempt is made to modify the surface metallurgically and enhance the wear resistance of AISI 316LN austenitic stainless steel using friction stir processing. Friction stir welding tools made up of tungsten based alloy with pin and pinless configuration was used. Fine equiaxed grains were observed in the friction stir processed zone irrespective of tool configuration used. Dry sliding wear resistance was evaluated using pin-on-disc wear tester and it is found that, the friction stir processed zone showed superior wear resistance compared to the base metal. Microstructure, micro hardness, and worn surfaces were used to correlate the results obtained.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


Author(s):  
Leonardo Roses ◽  
Davide Bonalumi ◽  
Stefano Campanari ◽  
Paolo Iora ◽  
Giampaolo Manzolini

This paper deals with the performance comparison over simulated micro-cogeneration units based on polymer electrolyte membrane fuel cells (PEMFC or PEM), when the fuel is processed by means of two contrasting techniques. On the one hand with the use of conventional natural gas steam reforming (SR), and on the other, the adoption of an innovative palladium based membrane-reformer. After the definition of the plant layout, which reflects the results of previous studies and includes all the components of a 4 kW PEM for combined heat and power production, the comparison among the plant performances is carried out with two approaches: (i) using a in-house developed code (GS), able to calculate mass and energy balances, as well as a number of specific component parameters, already applied to a large variety of plant simulations, and (ii) using a commercial code (Aspen Plus®). The comparison allows to validate the simulated performance results as well as to evidence the advantages of the two approaches and to assess the effects of different simulation assumptions.


Sign in / Sign up

Export Citation Format

Share Document