Non-Destructive Fluorine Depth Profiling as Quality Assurance for the Oxidation Protection of TiAl Turbine Blades

2010 ◽  
Vol 638-642 ◽  
pp. 1384-1389 ◽  
Author(s):  
Sven Neve ◽  
Kurt Stiebing ◽  
Lothar P.H. Schmidt ◽  
Hans Eberhard Zschau ◽  
Patrick J. Masset ◽  
...  

Using the halogen effect TiAl-alloys can be protected against high-temperature oxidation. Two different fluorination methods were applied to turbine blades. The mass increase due to oxidation can be drastically reduced compared to untreated specimen. A new vacuum chamber for ion beam analysis was developed to analyze the real parts. Using PIGE-technique the F-content as a function of depth before and after oxidation was detected. Thickness and composition of the oxide scale were measured by RBS. Both ion beam methods were non destructive and thus enabled for the first time quality assurance of the halogen treatment on real components.

2020 ◽  
Vol 13 ◽  
pp. 51
Author(s):  
H.-W. Becker

The unique advantages of ion beam analysis, such as the depth resolved unam- biguous stoichometric information of RBS or the possibility to detect hydrogen with high depth resolution still opens new applications in fundamental as well as applied science. Two examples are presented here.The diffusion of hydrogen in cement during the formation of cement has been studied with the 15N hydrogen depth profiling. It could be shown, that the known stages of the hydration process are correlated with the diffusion of hydrogen on a nanometer scale.Diffusion processes play also an important role in geology. The investigation of such processes with RBS will be presented. Prospects of diffusion studies using isotopie tracing with low lying resonances will be discussed.


2012 ◽  
Vol 18 (S5) ◽  
pp. 83-84
Author(s):  
J. Pacheco de Carvalho ◽  
C. F. R. Pacheco ◽  
A. D. Reis

There is a wide range of surface analysis techniques which are, generally, complementary and provide target information for depths near the surface. Nuclear techniques, which are non-destructive, provide for analysis over a few microns close to the surface giving absolute values of concentrations of isotopes and elements. They have been applied in areas such as scientific, technologic, industry, arts and medicine, using MeV ion beams. Nuclear reactions permit tracing of isotopes with high sensitivities. We use ion-ion reactions and the energy analysis method. At a suitable energy of the incident ion beam, an energy spectrum is recorded of ions from the reaction, coming from several depths in the target. Such spectra are computationally predicted, giving target composition and concentration profile information. Elastic scattering is a particular and important case. A computer program has been developed in this context, mainly for flat targets. The non-flat target situation arises as an extension.


1998 ◽  
Vol 513 ◽  
Author(s):  
V. Atluri ◽  
N. Herbots

ABSTRACTSi(100) is H-passivated via a modified pre-RCA cleaning followed by etching in HF:alcohol, to produce ordered (1 × 1) templates which desorb at low temperature (T ≥ 600°C). Four sets of 12 wafers, each set processed identically, are used to test reproducibility, and are characterized by Ion Beam Analysis (IBA), Tapping Mode Atomic Force Microscope (TMAFM), and Fourier Transform Infrared Spectroscopy (FTIR). The absolute coverage of oxygen and carbon is measured by ion channeling combined with nuclear resonance at 3.05 MeV for oxygen and 4.265 MeV for carbon, improving the signal to noise by a factor 10 for oxygen and by 120 for carbon. It is then possible for the first time to measure ordering of oxygen atoms with respect to the surface by comparing the amount of oxygen from rotating random spectra to the disordered oxygen measured by channeling. Hydrogen is measured via the elastic recoil detection (ERD) of 4He2+ at 2.8 MeV.Si(100) etched in HF:methanol after a modified preliminary RCA cleaning yields the cleanest surface. The data suggest that Si(100) passivated by HF in alcohol is terminated by an ordered hydroxide layer, which desorbs at lower temperatures than the more refractory Si02.


2021 ◽  
Author(s):  
M. Salimi ◽  
O. Kakuee ◽  
S. F. Masoudi ◽  
H. R. kheiri ◽  
E. Briand ◽  
...  

Abstract The cross-sections of deuteron-induced nuclear reactions suitable for ion beam analysis, measured in different laboratories, are often significantly different. In the present work, differential cross-sections of 27 Al(d,p) and 27 Al(d,α) reactions were measured, and the cross sections benchmarked with thick target spectra obtained from pure aluminium for the first time in two independent laboratories. The 27 Al(d,p) and (d,alpha) differential cross-sections were measured between 1.4 and 2 MeV at scattering angles of 165°, 150°, and 135° in the VDGT laboratory in Tehran (Iran), and the same measurements for detector angle of 150° were repeated from scratch, including target making, with independent equipment on the SAFIR platform at INSP in Paris (France). The results of these two measurements at 150° are in good agreement, and for the first time a fitted function is proposed to describe the Al-cross sections for which no suitable theoretical expression exists. The obtained differential cross-sections were validated through benchmarking, by fitting with SIMNRA deuteron-induced particle spectra obtained from a high purity bulk Al target at both labs for deuteron incident energies between 1.6 and 2 MeV. The thick target spectra are well-reproduced. The evaluated and benchmarked cross sections have been uploaded to the ion beam analysis nuclear data library database (www-nds.iaea.org/ibandl/).


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 1852-1873 ◽  
Author(s):  
Lorenzo Torrisi ◽  
Valentina Venuti ◽  
Vincenza Crupi ◽  
Letteria Silipigni ◽  
Mariapompea Cutroneo ◽  
...  

The present work is aimed at the investigation of the ceramic bulk and pigmented glazed surfaces of ancient potteries dating back to XIX century A.D. and coming from the charming archeological site located in the Medieval Agsu town (Azerbaijan), a geographic area of special interest due to the ancient commercial routes between China, Asia Minor, and Europe. For the purpose of the study, complementary investigation tools have been exploited: non-destructive or micro-destructive investigation at elemental level by ion beam analysis (IBA) techniques, by using Rutherford Backscattering Spectrometry (RBS), Proton-Induced X-ray Emission (PIXE) spectroscopy and ion-microbeam analysis, and chemical characterization at microscopic level, by means of synchrotron radiation (SR) Fourier transform infrared (FTIR) microspectroscopy. The acquired information reveals useful for the identification of the provenance, the reconstruction of the firing technology, and finally, the identification of the pigment was used as a colorant of the glaze.


2020 ◽  
Vol 4 (2) ◽  
pp. 22 ◽  
Author(s):  
Tokihiro Ikeda

Production of ion microbeams using tapered glass capillary optics was introduced more than 10 years ago. This technique has drawn attention in terms of both its peculiar transmission features and application to ion beam analysis. The transmission mechanism based on a self-organized charge-up process for keV-energy ions was observed for the first time in an experiment using a multitude of nanometer-sized capillaries in a polymer foil. The same mechanism can be seen for the transmission of keV ions through a single tapered glass capillary. The transmission experiments with keV ions showed a delayed transmission, focusing effects, guiding effects, and formation of microbeams. Experiments using MeV-energy ions always aim at applications of microbeam irradiation for material analysis, surface modification, cell surgery, and so on. In this article, the applications of MeV ion microbeams, including the fabrication method of the glass capillary, are reviewed, as well as the experimental and theoretical studies for the transmission mechanisms of keV/MeV ions.


Author(s):  
Stanislav Sojak ◽  
Vladimi´r Krsˇjak ◽  
Werner Egger

Positron annihilation spectroscopy (PAS) is a non-destructive technique which provides information about microstructural damage of structural materials. In this paper, the Pulsed Low Energy Positron System (PLEPS) at the research reactor FRM-II at TU Munich was used to study depth profiling of binary Fe-Cr alloys. Fe-Cr model alloys with different chromium content were investigated in the as-received state as well as after helium ion implantation (dose up to 6.24×1017 ions/cm−2). Measured results show changes in the size of defects after implantation and also in non-implanted specimens depending on the Cr content.


Sign in / Sign up

Export Citation Format

Share Document