Synthesis and Atomic Force Microscopy Contact Current Images of Aluminum Doped ZnO Thin Films

2010 ◽  
Vol 644 ◽  
pp. 109-112
Author(s):  
N. Muñoz Aguirre ◽  
J. Eduardo Rivera-López ◽  
L. Martínez Pérez ◽  
Pedro A. Tamayo Meza

Aluminum doped ZnO thin films were synthesized by the water-mist assisted spray pyrolysis technique. The structural characterization by means of X-Ray diffraction measurements is reported. By means of Atomic Force Microscopy, the superficial electrical characteristics of the thin films are studied. Specifically, contact current images are shown and discussed. It is important to emphasize that in spite of no voltage is applied to the Atomic Force Microscopy contact conductive tip, current images are getting.

2019 ◽  
Vol 17 (40) ◽  
pp. 95-107
Author(s):  
Selma M. H. Al-Jawad

Pure and Fe-doped zinc oxide nanocrystalline films were preparedvia a sol–gel method using -C for 2 h.The thin films were prepared and characterized by X-ray diffraction(XRD), atomic force microscopy (AFM), field emission scanningelectron microscopy (FE-SEM) and UV- visible spectroscopy. TheXRD results showed that ZnO has hexagonal wurtzite structure andthe Fe ions were well incorporated into the ZnO structure. As the Felevel increased from 2 wt% to 8 wt%, the crystallite size reduced incomparison with the pure ZnO. The transmittance spectra were thenrecorded at wavelengths ranging from 300 nm to 1000 nm. Theoptical band gap energy of spin-coated films also decreased as Fedoping concentration increased. In particular, their optical band gapenergies were 3.75, 3.6, 3.5, 3.45 and 3.3 eV doping concentration of0%, 2%, 4%, 6% and 8% Fe, respectively. The performance of thepure and doped ZnO thin films was examined for the photocatalyticactivity using organic dyes (methyl orange, methyl blue, methylviolet). The samples ZnO with concentration of Fe showed increasedphotocatalytic activity with an optimal maximum performance at0.8 wt%.


2017 ◽  
Vol 55 (6) ◽  
pp. 2458-2467 ◽  
Author(s):  
Sara Benzitouni ◽  
Mourad Zaabat ◽  
Jean Ebothe ◽  
Boubaker Boudine ◽  
Raphael Coste

1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2008 ◽  
Vol 8 (4) ◽  
pp. 1757-1761 ◽  
Author(s):  
Ajeet Kaushik ◽  
Jitendra Kumar ◽  
M. K. Tiwari ◽  
R. Khan ◽  
B. D. Malhotra ◽  
...  

Polyaniline (PANI)–ZnO nanocomposite thin film has been successfully fabricated on glass substrates by using vacuum deposition technique. The as-grown PANI–ZnO nanocomposite thin films have been characterized using X-ray diffraction, Scanning Electron Microscopy, Atomic Force Microscopy, UV-visible spectrophotometer and Fourier Transform Infrared (FTIR) spectroscopy, respectively. X-ray diffraction of as-grown film shows the reflection of ZnO nanoparticles along with a broad peak of PANI. The surface morphology of nanocomposite films has been investigated using scanning electron microscopy and atomic force microscopy. The hypsochromic shift of the UV absorption band corresponding to π–π* transition in polymeric chain of PANI and a band at 504 cm –1 due to ZnO nanoparticles has been observed in the FTIR spectra. The hydrogen bonding between the imine group of PANI and ZnO nanoparticle has been confirmed from the presence of the absorbance band at 1151 cm–1 in the FTIR spectra of the nanocomposite thin films.


2021 ◽  
Vol 21 (3) ◽  
pp. 1560-1569
Author(s):  
K. Moorthy ◽  
S. S. R. Inbanathan ◽  
C. Gopinathan ◽  
N. P. Lalla ◽  
Abdulaziz Ali Alghamdi ◽  
...  

Root like structured Ni-doped zinc oxide [Zn(1-x)NixO (x = 0.09)] thin films were deposited on a non-conducting glass substrate by indigenously developed spray pyrolysis system at optimized substrate hotness of 573±5 K. Thus obtained Ni-doped ZnO thin films were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Atomic Force Microscopy (AFM). XRD result revealed that Ni-doped ZnO has a polycrystalline nature with a hexagonal wurtzite structure. For pure ZnO and Ni-doped ZnO thin films, the particle sizes were 60.9 and 53.3 nm while lattice strain values were 1.56×10−3 and 1.14×10−3, respectively. The film surface showed characteristic root-like structure as observed by the SEM. It was observed that the Ni-doped ZnO thin films were grown in high density along with more extent of branching as compared to pure ZnO thin films but retained the root-like morphologies, however, the branches were more-thinner and of shorter lengths. AFM analysis showed that the surface grains of the Ni-doped samples are homogeneous with less RMS roughness values compared with the undoped ZnO samples. The photocatalytic activity of the prepared thin films was evaluated by the degradation of methyl orange (MO) dye under UV light irradiation. Pure ZnO and Ni-doped ZnO thin films took 150 min and 100 min to degrade about 60% MO dye, respectively.


2001 ◽  
Vol 672 ◽  
Author(s):  
G. Wei ◽  
J. Du ◽  
A. Rar ◽  
J. A. Barnard

ABSTRACTThe nanoindentation behavior of DC magnetron sputtered 10 nm Cu and 10 nm Cu/2 nm Cr thin films deposited on Si (100) has been studied using a Hysitron nanomechanical system. X- ray diffraction and X-ray reflectivity were used to measure the film structure and film thickness, respectively. The grain size and orientation of Cu and Cu/Cr thin films were measured by TEM. Atomic force microscopy (AFM) was used to evaluate the surface morphology and roughness. At the same load, the nanoindentaion displacement of Cu/Cr is smaller than that for Cu, i.e., the 2nm thick Cr underlayer enhances the hardness of Cu. X-ray, TEM, and AFM results show that the grain size of Cu/Cr (< 15 nm) is actually larger than Cu (∼ 3 nm) indicating that the inverse Hall-Petch relationship may be operative.


Author(s):  
Tran Thi Ngoc Anh ◽  
Tran Thi Ha ◽  
Nguyen Viet Tuyen ◽  
Pham Nguyen Hai

This paper presents results of preparation of Ag doped ZnO bulk sample by solid state reaction and Ag doped ZnO thin films by sputtering method. Effect of doping concentration (1, 2 and 4%) on the properties of the thin films was investigated. Various methods were utilized to investigate characteristics of the samples: X-ray diffraction, Raman scattering spectroscopy, photoluminescence, energy dispersive X-Ray spectroscopy, scanning electron microscopy, atomic force microscope, absorption spectroscopy and Hall measurement. The results show that Ag diffused into ZnO crystal lattice after heat treatment at 1200oC. As-prepared thin film samples exhibit low resistivity in the order of 10-3Ω.cm. The film doped with 2% Ag shows the lowest resistivity of 1.8´10-3Ω.cm which is potential for making transparent electrodes in optoelectronics.


2010 ◽  
Vol 24 (31) ◽  
pp. 6079-6090 ◽  
Author(s):  
I. I. RUSU ◽  
M. SMIRNOV ◽  
G. G. RUSU ◽  
A. P. RAMBU ◽  
G. I. RUSU

Zinc oxide ( ZnO ) thin films were deposited onto glass substrates by d.c. magnetron sputtering. The structural analysis, by X-ray diffraction and atomic force microscopy, indicate that the studied films are polycrystalline and have a wurtzite (hexagonal) structure. The film crystallites are preferentially oriented with (002) planes parallel to the substrates. The mechanism of electronic transport is explained in terms of Seto's model elaborated for polycrystalline semiconducting films (crystallite boundary trapping theory). Some parameters of used model (impurity concentration, density and energy of the trapping states, etc.) have been calculated. The optical bandgap (Eg0 = 3.28–3.37 eV ) was determined from absorption spectra.


2013 ◽  
Vol 667 ◽  
pp. 495-500 ◽  
Author(s):  
I. Saurdi ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

In this work, ZnO thin films were deposited by RF Magnetron sputtering at different substrate temperatures in the range of 100-400oC on glass substrate. The thin films were characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and I-V measurement, for morphology and electrical properties study. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to study the structural and morphology of the thin films. The particle size varied from 41nm to 146nm showing that the nucleation of ZnO thin films as the substrate temperatures increased. Higher particle size was observed as the substrate temperatures increased up to 400oC as well as high conductivity of thin films at 400oC.


Sign in / Sign up

Export Citation Format

Share Document