Development of High Modulus/High Strength Carbon Fiber Reinforced Nanoparticle Filled Polyimide Based Multiscale Hybrid Composites

2010 ◽  
Vol 654-656 ◽  
pp. 2620-2623 ◽  
Author(s):  
Kimiyoshi Naito ◽  
Jenn Ming Yang ◽  
Yutaka Kagawa

The polyacrylonitrile (PAN)-based and pitch-based carbon fiber-reinforced nanoparticle filled polyimide based multiscale hybrid composites have been fabricated using vacuum assisted resin transfer molding (VaRTM) and autoclave curing. The carbon fibers used in this study were high tensile strength PAN-based (T1000GB) and high modulus pitch-based (K13D) carbon fibers. Fiber orientations of the T1000GB/K13D hybrid composites were set to [0(T1000GB)/0(K13D)]2S (T1000GB and K13D unidirectional layers were alternately and symmetrically laminated). The fiber volume fraction was 50 vol% (T1000GB: 24.9 vol%, K13D: 25.1 vol%). Polyimide used in this study was a commercially available polyimide precursor solution (Skybond 703). Four different types of nanoparticle (25nm-C, 20-30nm-β-SiC, 130nm-β-SiC and 80nm-SiO2) and particle volume fraction was 5.0 vol% used for the inclusion. The tensile properties and fracture behavior of T1000GB/K13D nanoparticle filled and unfilled hybrid composites have been investigated. For 25nm-C, 20-30nm-β-SiC and 80nm-SiO2 nanoparticle filled and unfilled hybrid composites, the tensile stress-strain curves show a complicated shape. By the high modulus pitch-based carbon fiber, the hybrid composites show the high modulus in the initial stage of loading. Subsequently, when the high modulus carbon fiber begin to fail, the high strength fiber would hold the load (strength) and the material continues to endure high load without instantaneous failure.

2021 ◽  
Author(s):  
MATHEW SCHEY ◽  
SCOTT STAPLETON ◽  
TIBOR BEKE

Carbon fiber reinforced plastics (CFRPs) are widely used due to their high strength to weight ratios. A common process manufacturers use to increase the strength to weight ratio is debulking. Debulking is the process of transversely compacting a dry fibrous reinforcement prior to wet out with the matrix resin, in order to induce fiber nesting, effectively increasing the volume fraction of the sample. While this process is widely understood macroscopically its effects on fibrous microstructures have not yet been well characterized. The aim of this work is to compare the microstructures of three CFRPs, varying only the debulking step in the manufacturing process. The microstructural effects of debulking on three unidirectional CFRPs made from three different levels of debulking were studied. High resolution serial sections of all three samples were taken using the UES ROBO-MET at the NASA Glenn Research Center in Cleveland, Ohio. Using these scans, the fiber positions were measured and connected to make fiber paths. Statistical descriptors such as local fiber and void volume fractions, and void distribution and morphology were then generated for each sample and compared. Using these descriptors, the effects of debulking on the composite microstructure can be measured.


2010 ◽  
Vol 434-435 ◽  
pp. 627-629 ◽  
Author(s):  
Juan Ying Li ◽  
Jian Feng Huang ◽  
Li Yun Cao

Carbon fiber reinforced silicon-substituted hydroxyapatite (C(f)/Si-HA) bone cements composites were prepared by microwave chemical reaction with a later solidification process using carbamide, calcium nitrate, ammonium dibasic phosphate and ethyl silicate as raw materials, and buffer solutions of acrylic acid and itaconic acid as gelling agent. The influences of carbon fibers volume fraction, contents of coupling agents, sodium citrate contents on the flexural strength of silicon- substituted hydroxyapatite bone cements composites were particularly investigated. The phase composition, microstructures and flexural strength of the composites were characterized by X-ray diffraction, scanning electron microscope and universal testing machine analyses. And the flexural strength of the prepared composites reach the maximum value 41.5MPa when the carbon fibers volume fraction, silane agent KH550 and sodium citrate mass fraction arrive to 3.0, 0.6 and 3.0%, respectively.


2010 ◽  
Vol 659 ◽  
pp. 229-234 ◽  
Author(s):  
Imre Norbert Orbulov ◽  
Árpád Németh

Carbon fiber reinforced aluminum matrix composite blocks and a pipe (as semi-product) were produced by pressure infiltration technique. In this paper the authors deal with the production method and investigations of the blocks and the pipe. In our composites AlSi12 eutectic aluminium-silicon alloy was used as matrix material. The reinforcements were ‘A’ and ‘B’ type carbon fibers (‘A’ having lower amorphous carbon content than ‘B’). The volume fraction of the fibers was outstanding – at least 55 vol%. Scanning electron microscopic investigations were done in order to observe the rather rough surface of the carbon fibres. X-ray diffraction and energy dispersive spectrometry was done in order to estimate the quantity of Al4C3 intermetallic phase at the carbon fiber/matrix interface region. The measurements showed that the quantity of Al4C3 strongly depends on the amorphous carbon quantity in carbon fibers. Much more Al4C3 was formed in the case of ‘A’ type reinforcement (less amorphous carbon), than in the case of ‘B’ type reinforcement (more amorphous carbon). The presence of Al4C3 crystals caused large scatter in the mechanical properties, the UTS was decreased, while the compressive strength was increased. Fracture surfaces were investigated: the composite showed rigid fracture.


2020 ◽  
Vol 8 (6) ◽  
pp. 5171-5175

Fiber reinforced concrete is becoming increasingly more important in the construction field due to its numerous applications and advantages. Fibre reinforced concrete (FRC) is composed of fibres and matrix. Fibres constitute the reinforcements and the main source of strength while the matrix ‘glues’ all the fibres together in shape and transfers the stress between the reinforcing fibres. Different types of fibres in use are steel, glass, carbon, basalt and aramid. Fibre reinforced concrete has many advantages such as improvement in the mechanical properties like modulus of elasticity, deflection, energy absorption and crack resistance. This paper discusses the experimental investigations carried out on carbon fiber reinforced concrete under impact loading. Mix design is carried out for M25 grade of concrete reinforced with carbon fibers in proportions of 0%, 0.75%, 1.00% and 1.25% by volume fraction. The test results show that there is an increase in compressive, split tensile and flexural strengths of carbon fiber reinforced concrete (not discussed in this paper). The inclusion of 1% carbon fibers showed the maximum enhancement in strength and it can be considered as optimum dosage. When compared to conventional concrete, the crack width also reduced in carbon fiber reinforced concrete. Extensometer test was conducted to determine the modulus of elasticity of concrete. The main aim of this study is to understand the dynamic behavior of carbon fiber reinforced concrete under impact loading. For carrying out the drop-weight tests, eight slab specimens were casted. The edges of the slab were fixed on all four sides. FRC slab with 1% addition of carbon fibres gave the best results. There was a decrease in displacement and an increase in impact energy for an the aspect ratio of fiber is 45.


2007 ◽  
Vol 34 (3) ◽  
pp. 284-290 ◽  
Author(s):  
Rose Mary Chacko ◽  
Nemkumar Banthia ◽  
Aftab A Mufti

The addition of carbon fibers has proved to be one of the most effective ways of improving the electrical conductivity of ordinary cement pastes. This implies that such materials can be used in strain, temperature, and chemical sensing. The present study was aimed at the development of such sensors. Inexpensive, petroleum-pitch-based, mesophase, high-modulus carbon fibers were used throughout. It was seen that materials with high conductivity could be obtained by reinforcing hydrated cement paste with carbon fibers. Electronic conduction was seen as the dominant mode over electrolytic conduction. Compared with strain, the influence of temperature on the electrical resistivity was found to be insignificant, implying a lack of need for temperature correction. Results also indicate that these sensors can be excellent crack detectors.Key words: carbon-fiber-reinforced cement-based composites, structural health monitoring, sensor, electrical resistivity, compressive strain, temperature, moisture content, chloride concentration, fiber volume fraction, water/cementitious ratio, cracking.


2020 ◽  
Vol 40 (5) ◽  
pp. 415-420 ◽  
Author(s):  
Yasin Altin ◽  
Hazal Yilmaz ◽  
Omer Faruk Unsal ◽  
Ayse Celik Bedeloglu

AbstractThe interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


Sign in / Sign up

Export Citation Format

Share Document