Effect of Pore Size on Mechanical Properties of Titanium Foams

2010 ◽  
Vol 654-656 ◽  
pp. 827-830 ◽  
Author(s):  
Yang An ◽  
Chun Hui Yang ◽  
Peter D. Hodgson ◽  
Cui E Wen

In the study, both experimental work and numerical modeling are performed to investigate the pore size effects on the mechanical properties and deformation behaviours of titanium foams. Cylindrical titanium foam samples with different pore sizes are fabricated through powder metallurgy. Scanning electron microscope (SEM) is used to determine the pore size, pore distribution and the ratios of the length to width of pores. Compressive tests are carried out to determine the mechanical properties of the titanium foams with different pore sizes. Finally, finite element modeling is attempted to simulate the deformation behaviour and the mechanical properties of the titanium foams. Results indicate that titanium foams with different pore sizes have different geometrical characteristics, which lead to different deformation behaviours of cell walls during compression, resulting in different mechanical properties of titanium foams.

2007 ◽  
Vol 29-30 ◽  
pp. 75-78 ◽  
Author(s):  
Takumi Banno ◽  
Yun Cang Li ◽  
Cui E Wen ◽  
Yasuo Yamada

Micro-porous nickel foams with an open cell structure were fabricated by the space-holding sintering. The average pore size of the micro-porous nickel specimens ranged from 30 μm to 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the nickel specimens were observed using scanning electron microscopy (SEM). The mechanical properties were studied using compressive tests. For comparison, macro-porous nickel foams prepared by the chemical vapour deposition method with pore sizes of 800 μm and 1300 μm and porosity of 95 % were also presented. Results indicated that the ratio value of 6 and higher for the specimen length to cell size (L/d) is satisfying for obtaining stable compressive properties. The micro-porous nickel specimens exhibited different deformation behaviour and dramatically increased mechanical properties, compared to those of the macro-porous nickel specimens.


2021 ◽  
Author(s):  
◽  
William King, III ◽  

The ideal “off the shelf” tissue engineering, small-diameter (< 6 mm inner diameter (ID)) vascular graft hinges on designing a template that facilitates transmural ingrowth of capillaries to regenerate an endothelized neointimal surface. Previous traditionally electrospun (TES) approaches to create bioresorbable vascular grafts lack the pore sizes required to facilitate transmural capillary ingrowth required for successful in situ neovascular regeneration. Therefore, the ability to create scaffolds with program-specific architectures independent of fiber diameter via the relatively recent sub-technique of near-field electrospinning (NFES) represents a promising solution to create tissue engineering vascular grafts. These programmed large pore sizes are anticipated to promote in situ regeneration and improve the outcomes as well as the quality of life of patients with arterial disease. In this dissertation, we manufactured via NFES as well as characterized biodegradable polydioxanone (PDO) small-diameter vascular grafts. Chapter 1 introduces the need for off-the-shelf, small-diameter vascular grafts to facilitate in situ regeneration, the process and pore size limitations of TES vascular grafts, and the promising use of NFES to develop precisely tailored PDO vascular grafts. Chapter 2 describes the process of NFES and details the current progress in NFES of biomedical polymers as well as the major limitations that exist in the field. Chapters 3, 4, and 5 contain primary research exploring the creation of an NFES vascular graft scaffold and characterizing the mechanical as well as biological response of these scaffolds. Specifically, in Chapter 3 we demonstrate a NFES apparatus designed around a commercial 3D printer to write PDO microfibers. The processing parameters of air gap, polymer concentration, translational velocity, needle gauge, and applied voltage were characterized for their effects on PDO fiber diameter. The processing parameters of polymer concentration and translational fiber deposition velocity were further characterized for their effects on fiber crystallinity and individual fiber uniformity. The precision of fiber stacking via a 3D printer was qualitatively evaluated to inform the creation of 3D scaffolds to guide the alignment of human gingival fibroblasts. It was found that fiber diameters correlate positively with polymer concentration, applied voltage, and needle gauge and inversely correlate with translational velocity and air gap distance. Individual fiber diameter variability decreases, and crystallinity increases with increasing translational fiber deposition velocity. These data resulted in the creation of tailored PDO 3D scaffolds which guided the alignment of primary human fibroblast cells. Together, these results suggest that NFES of PDO can be scaled to create precise geometries with tailored fiber diameters for vascular graft scaffolds. In Chapter 4, we demonstrated a NFES device to semi-stably write PDO microfibers. The polymer spinneret was programmed to translate in a stacking grid pattern, which resulted in a scaffold with highly aligned grid fibers that were intercalated with low density, random fibers. As a consequence of this random switching process, increasing the grid dimensions resulted in both a lower density of fibers in the center of each grid in the scaffold as well as a lower density of “rebar-like” stacked fibers per unit area. These hybrid architecture scaffolds resulted in tailorable as well as greater surface pore sizes as given by scanning electron micrographs and effective object permeability as indicated by fluorescent microsphere filtration compared to TES scaffolds of the same fiber diameter. Furthermore, these programmable scaffolds resulted in tailorability in the characterized mechanical properties ultimate tensile strength, percent elongation, yield stress, yield elongation, and Young’s modulus independent of fiber diameter compared to the static TES scaffold characterization. Lastly, the innate immune response of neutrophil extracellular traps (NETs) was further attenuated on NFES scaffolds compared to TES scaffolds. These results suggest that this novel NFES scaffold architecture of PDO can be highly tailored as a function of programming for small diameter vascular graft scaffolds. In Chapter 5, we created two types of NFES PDO architectures, as small-diameter vascular graft scaffolds. The first architecture type consisted of a 200 x 200 µm and 500 x 500 µm grid geometry with random fiber infill produced from one set of processing parameters, while the second architecture consisted of aligned fibers written in a 45°/45° and 20°/70° offset from the long axis, both on a 4 mm diameter cylindrical mandrel. These vascular graft scaffolds were characterized for their effective object transit pore size, mechanical properties, and platelet-material interactions compared to TES scaffolds and Gore-Tex® vascular grafts. It was found that effective pore size, given by 9.9 and 97 µm microsphere filtration through the scaffold wall for NFES grafts, was significantly more permeable compared to TES grafts and Gore-Tex® vascular grafts. Furthermore, the characterized mechanical properties of ultimate tensile strength, percent elongation, suture retention, burst pressure, and Young’s modulus were all tailorable for NFES grafts, independent of fiber diameter, compared to TES graft characterization. Lastly, platelet adhesion was attenuated on large pore size NFES grafts compared to the TES grafts which approximated the low level of platelet adhesion measured on Gore-Tex® grafts, with all grafts showing minimal platelet activation given by P-selectin surface expression. Together, these results suggest a highly tailorable process for the creation of the next generation of small-diameter vascular grafts. Lastly, Chapter 6 expounds future considerations for continuing research in NFES technology, NFES for general tissue engineering, and NFES for vascular tissue engineering as well as gives final conclusions. Together, the finding of this dissertation indicated that NFES vascular grafts result in seamless, small diameter tubular scaffolds with programmable pore sizes on the magnitude anticipated to facilitate transmural endothelialization as well as programmable mechanical properties that approximate native values. Thus, this work represents the next step in developing bioinstructive designed scaffolds to facilitate in situ vascular regeneration to improve the outcomes as well as the quality of life of patients with arterial vascular disease.


2007 ◽  
Vol 534-536 ◽  
pp. 977-980
Author(s):  
Yasuo Yamada ◽  
Yun Cang Li ◽  
Takumi Banno ◽  
Zhen Kai Xie ◽  
Cui E Wen

Micro-porous nickel (Ni) with an open cell structure was fabricated by a special powder metallurgical process, which includes the adding of a space-holding material. The average pore size of the micro-porous Ni samples approximated 30 μm and 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the Ni samples were observed using scanning electron microscopy (SEM) and the mechanical properties were evaluated using compressive tests. For comparison, porous Ni samples with a macro-porous structure prepared by both powder metallurgy (pore size 800 μm) and the traditional chemical vapour deposition (CVD) method (pore size 1300 μm) were also presented. Results indicated that the porous Ni samples with a micro-porous structure exhibited different deformation behaviour and dramatically increased mechanical properties, compared to those of the macro-porous Ni samples.


2021 ◽  
Author(s):  
Chu-Chung Huang ◽  
Chih-Chin Heather Hsu ◽  
Feng-Lei Zhou ◽  
Slawomir Kusmia ◽  
Mark Drakesmith ◽  
...  

Purpose: Recent advances in diffusion-weighted MRI provide 'restricted diffusion signal fraction' and restricting pore size estimates. Materials based on co-electrospun oriented hollow cylinders have been introduced to provide validation for such methods. This study extends this work, exploring accuracy and repeatability using an extended acquisition on a 300 mT/m gradient human MRI scanner, in substrates closely mimicking tissue, i.e., non-circular cross-sections, intra-voxel fibre crossing, intra-voxel distributions of pore-sizes and smaller pore-sizes overall. Methods: In a single-blind experiment, diffusion-weighted data were collected from a biomimetic phantom on a 3T Connectom system using multiple gradient directions/diffusion times. Repeated scans established short-term and long-term repeatability. The total scan time (54 minutes) matched similar protocols used in human studies. The number of distinct fibre populations was estimated using spherical deconvolution, and median pore size estimated through the combination of CHARMED and AxCaliber3D framework. Diffusion-based estimates were compared with measurements derived from scanning electron microscopy. Results: The phantom contained substrates with different orientations, fibre configurations and pore size distributions. Irrespective of one or two populations within the voxel, the pore-size estimates (μm) and orientation-estimates showed excellent agreement with the median values of pore-size derived from scanning electron microscope and phantom configuration. Measurement repeatability depended on substrate complexity, with lower values seen in samples containing crossing-fibres. Sample-level repeatability was found to be good. Conclusion: While no phantom mimics tissue completely, this study takes a step closer to validating diffusion microstructure measurements for use in vivo by demonstrating the ability to quantify microgeometry in relatively complex configurations.


Author(s):  
M. G. Li ◽  
X. Y. Tian ◽  
X. B. Chen

Dispensing technique is one of the promising solid freeform (SFF) methods to fabricate scaffolds with controllable pore sizes and porosities. In this paper, a model to represent the dispensing-based SFF fabrication process is developed. Specifically, the mechanical properties of the scaffold material and its influence on the fabrication process are examined; the flow rate of the scaffold material dispensed and the pore size and porosity of the scaffold fabricated in the process are represented. In order to generate scaffold strands without either tensile or compressive stress, the optimal moving speed of the dispensing head is determined from the flow rate of the scaffold material dispensed. Experiments were also carried out to illustrate the effectiveness of the model developed.


2008 ◽  
Vol 569 ◽  
pp. 277-280
Author(s):  
Yasuo Yamada ◽  
Takumi Banno ◽  
Yun Cang Li ◽  
Cui E Wen

In the present study, porous nickel foam samples with pore sizes of 20 μm and 150 μm and porosities of 60 % and 70 % were fabricated by the space-holding sintering method via powder metallurgy. Electron scanning microscopy (SEM) and Image-Pro Plus were used to characterise the morphological features of the porous nickel foam samples. The anisotropic mechanical properties of porous nickel foams were investigated by compressive testing loading in different directions, i.e. the major pore axis and minor pore axis. Results indicated that the nominal stress of the nickel foam samples increases with the decreasing of the porosity. Moreover, the foam sample exhibited significantly higher nominal stress for loading in the direction of the major pore axis than loading in direction of the minor pore axis. It is also noticeable that the nominal stress of the nickel foams increases with the decreasing of the pore size. It seems that the deformation behaviour of the foams with a pore size in the micron-order differs from those with a macro-porous structure.


2016 ◽  
Vol 690 ◽  
pp. 276-281 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Phachongkit Boonanunwong ◽  
Jocelyn Calvez ◽  
Parjaree Thavorniti ◽  
Prinya Chindaprasirt ◽  
...  

Geopolymer is generally made of pozzolanic materials and alkali activators such as sodium alkali or potassium alkali. It can be solidified at ambient temperature to be developed as construction materials. Polylactic acid (PLA) was chosen to create pores in order for porous geopolymers. In this research, the porous geopolymer was developed either to reduce the weight of materials or to be utilized as thermal insulation materials. It was performed by metakaolin (MK), calcium hydroxide (Ca(OH)2), 10 molar potassium hydroxide (10M KOH) and potassium silicate (K2SiO3) for geopolymer pastes. These geopolymer pastes were mixed with 40 wt%, 50 wt% and 60 wt% of PLA and fired at 550°C for 6 h., therefore, pores inside geopolymer structure were found. Consequently, those geopolymers were characterized the mechanical properties e.g. compressive and flexural strength by Universal Testing Machine (UTM), microstructures by Scanning Electron Microscope (SEM), chemical compositions as functional groups by Fourier Infrared Spectroscope (FTIR). Furthermore, the pore size, bulk density, apparent porosity and thermal conductivity coefficient of geopolymers were analyzed. The results presented that the quantity of PLA affected the compressive strength and porosity of geopolymers. In conclusion, our porous geopolymer with 40 wt% PLA gave the highest strength.


2012 ◽  
Vol 159 ◽  
pp. 141-145
Author(s):  
Man Tong Jin ◽  
Liang Chen ◽  
Lin Wei Chen ◽  
Zan Fang Jin

As for the synthesis of polyester fibers based geopolymer, different fiber contents (0 %, 0.1 %, 0.2 %, 0.3 %, and 0.4 %) are investigated to obtain the optimum synthesis condition by flexural and compressive tests. X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) are employed to explore the crystalline structure and microstructure of composites. Results show that the addition of 0.2 % fiber is considered as the most suitable proportion in polyester-geopolymers.


2007 ◽  
Vol 539-543 ◽  
pp. 1833-1838 ◽  
Author(s):  
Yasuo Yamada ◽  
Takumi Banno ◽  
Zhen Kai Xie ◽  
Yun Cang Li ◽  
Cui E Wen

In the present study, nickel foams with an open cell microporous structure were fabricated by the so-called space-holding particle sintering method, which included the adding of a particulate polymeric material (PMMA). The average pore size of the nickel foams approximated 10.5 μm; and the porosity ranged from 70 % to 80 %. The porous characteristics of the nickel foams were observed using scanning electron microscopy and the mechanical properties were evaluated using compressive tests. For comparison, nickel foams with an open-cell macroporous structure (pore size approximately 1.3 mm) were also presented. Results indicated that the nickel foams with a microporous structure possess enhanced mechanical properties than those with a macroporous structure.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document