Improved Photovoltaic Efficiency of Polymer Photovoltaic Cells by Microwave Irradiation

2010 ◽  
Vol 663-665 ◽  
pp. 819-822
Author(s):  
Boeun Kim ◽  
Kyeong K. Lee ◽  
Sung Koo Lee ◽  
Eun Hee Lim

In this study, microwave annealing treatment was introduced into poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61butyric acid methyl ester (PCBM) and poly(9,9‘-dioctylfluorene-cobithiophene (PFT2):PCBM systems instead of thermal annealing treatment. In both systems, microwave annealing showed photovoltaic performane comparable to that of conventional thermal annealing. Through the UV-vis absorption, atomic force microscopy (AFM) and X-ray diffraction (XRD) studies, we were able to confirm that the microwave annealing increases the crystallization of the P3HT polymer chains.

2015 ◽  
Vol 754-755 ◽  
pp. 591-594
Author(s):  
Haslinda Abdul Hamid ◽  
M.N. Abdul Hadi

The codoped ZnO thin film were deposited by DC magnetron sputtering on silicon (111) followed by annealing treatment at 200 °C and 600 °C for 1 hour in nitrogen and oxygen gas mixture. Structural investigation was carried out by scanning electron microscopy (SEM), atomic force microscopy and x-ray diffraction (XRD). Film roughness and grain shape were found to be correlated with the annealing temperatures.


1999 ◽  
Vol 14 (5) ◽  
pp. 2133-2137 ◽  
Author(s):  
M. P. Delplancke-Ogletree ◽  
M. Ye ◽  
R. Winand ◽  
J. F. de Marneffe ◽  
R. Deltour

We studied the influence of thermal annealing on the surface structure of (100) singlecrystal MgO substrates by atomic force microscopy (AFM). By annealing MgO substrates at various temperatures for 4 h in flowing oxygen, we showed that the surface reconstruction could be explained by considering surface diffusion, surface evaporation, and condensation. At an annealing temperature of 1473 K, a stepped structure was formed with screw dislocations acting as step sources. The influence of humidity on the surface morphology of MgO substrates was also studied by exposing them to a constant humidity of 40 and 80% for different times. After an exposure time of 1.5 h in 80% humidity, the substrate surface was already covered by reaction products. For the 40% humidity, the corresponding time is 10 h. The major reaction product was identified as Mg(OH)2 by x-ray diffraction.


2008 ◽  
Vol 8 (9) ◽  
pp. 4387-4394 ◽  
Author(s):  
Madhavi Thakurdesai ◽  
I. Sulania ◽  
A. M. Narsale ◽  
D. Kanjilal ◽  
Varsha Bhattacharyya

Amorphous thin films of TiO2 deposited by Pulsed Laser Deposition (PLD) method are irradiated by Swift Heavy Ion (SHI) beam. The irradiated films are subsequently annealed by Rapid Thermal Annealing (RTA) method. Atomic Force Microscopy (AFM) study reveals formation of nano-rings on the surface after RTA processing. Phase change is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopy. Optical characterisation is carried out by UV-VIS absorption spectroscopy. Though no shift of absorption edge is observed after irradiation, RTA processing does show redshift.


2002 ◽  
Vol 09 (05n06) ◽  
pp. 1681-1685 ◽  
Author(s):  
H. INFANTE ◽  
G. GORDILLO

CdTe thin films deposited by the CSS (close spaced sublimation) method, with adequate properties to be used as absorber layer in solar cells, were submitted to a chemical treatment in a saturated CdCl2 solution, followed by thermal annealing in air at 400°C, in order to improve the electronic properties. The effect of chemical and thermal treatments on the morphological and crystallographic properties was studied through atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements. The studies revealed that the CdTe grows in the cubic phase and that the postdeposition treatments affect the morphology as well as the crystallographic properties; the effect on the morphology is significantly stronger. Increase of the grain size and roughness was observed in samples treated chemically and thermally. On the other hand, no effects were identified on the crystalline structure as induced by the treatments, although recrystallization was observed after thermal annealing.


2019 ◽  
Author(s):  
Aliyu Kabiru Isiyaku ◽  
Ahmad Hadi Ali ◽  
Nafarizal Nayan

Developing a new design and structure of transparent conductive oxides (TCO) materials to improve performance in optoelectronic devices are important and quite challenging. Microstructural, optical and electrical properties of sandwiched Al-Ag metals interlayer between top and bottom ITO layers (ITO/Al-Ag/ITO) have been investigated. The multilayer ITO/Al-Ag/ITO (IAAI) films were prepared using RF and DC magnetron sputtering method. Post annealing treatment at 400oC was conducted on IAAI and ITO (for reference) films in air. X-ray diffraction measurements show that the insertion of Al-Ag intermediate bilayer led to the crystallization of Ag interlayer even at as-deposited stage. Peaks intensities at ITO (222), Ag (111) and Al (200) crystal plane were observed after annealing treatment, indicating an enhancement in crystallinity of the IAAI film. The post-annealed IAAI film reveals a continuous and smooth surface roughness with improved growth in grain size as examined by atomic force microscopy (AFM) and field emission scanning electron microscopic (FESEM) respectively. Comparing the optoelectronic properties of IAAI film with single ITO film, the annealed IAAI film exhibited a remarkable improvement in optical transmittance (86.1%) with a very low sheet resistance of 2.93 Ω/sq as measured by UV-Vis spectrophotometer and four-point probe method. The carrier concentration increased more than double when Al-Ag layer was inserted between the ITO layers as determined by Hall Effect measurements. The under layer Al film helps to halts the Ag film agglomeration and oxidation which subsequently enhances the stability of IAAI multilayer film.  The performance of IAAI contact has been found to be high at 76.4 × 10-3 Ω compares to single ITO (69.4 × 10-3) contact as calculated by the figure of merit (FOM).


2019 ◽  
Vol 63 (1) ◽  
Author(s):  
Candelario Ramón de los Santos ◽  
Angélica Silvestre López Rodríguez ◽  
Pio Sifuentes Gallardo ◽  
Miguel Angel Hernández Rivera ◽  
German Pérez-Hernández ◽  
...  

The issue of the present research lays its foundation on the proposal of the Crassostrea virginica waste oyster shells (WOS) reuse to obtain calcium carbonate powder (CaCO3) and calcium hydroxide (Ca(OH)2) nanostructured, using thermal annealing treatments. The oysters shells were subjected to a previous physical grinding process to decrease their size (smaller sizes 0.074 mm). The parameter studied was the effect of annealing temperature (500, 700 and 900 °C in air atmosphere) on the structural properties and morphology of the powders by FTIR, XRD, SEM and HRTEM. The X-ray diffraction results indicate that the WOS in their natural state and thermally annealed at 500 °C  have two phases of CaCO3 the rhombohedral form for calcite with crystallite size around 24 nm and aragonite traces in orthorhombic phase. At 700 °C, the WOS powder is transformed into calcium hydroxide, also known as portlandite (Ca(OH)2), attributed to the absorption of water released during the thermal decomposition of CaCO3. This crystalline phase does not change when the temperature increases to 900 °C. The SEM and HRTEM analysis of WOS powders reveals that with a thermal annealing treatment it is possible to obtain   nanostructured CaCO3. FTIR analysis demonstrates the biogenic origin of CaCO3, due to amide groups. The nanostructured CaCO3 obtained by grinding and thermal annealing of WOS, can be used as drying agent, or as additive in ceramic and glass. The issue of the present research lays its foundation on the proposal of the Crassostrea virginica waste oyster shells (WOS) reuse to obtain calcium carbonate powder (CaCO3) and calcium hydroxide (Ca(OH)2) nanostructured, using thermal annealing treatments. The oysters shells were subjected to a previous physical grinding process to decrease their size (smaller sizes 0.074 mm). The parameter studied was the effect of annealing temperature (500, 700 and 900 °C in air atmosphere) on the structural properties and morphology of the powders by FTIR, XRD, SEM and HRTEM. The X-ray diffraction results indicate that the WOS in their natural state and thermally annealed at 500 °C  have two phases of CaCO3 the rhombohedral form for calcite with crystallite size around 24 nm and aragonite traces in orthorhombic phase. At 700 °C, the WOS powder is transformed into calcium hydroxide, also known as portlandite (Ca(OH)2), attributed to the absorption of water released during the thermal decomposition of CaCO3. This crystalline phase does not change when the temperature increases to 900 °C. The SEM and HRTEM analysis of WOS powders reveals that with a thermal annealing treatment it is possible to obtain   nanostructured CaCO3. FTIR analysis demonstrates the biogenic origin of CaCO3, due to amide groups. The nanostructured CaCO3 obtained by grinding and thermal annealing of WOS, can be used as drying agent, or as additive in ceramic and glass.


2003 ◽  
Vol 768 ◽  
Author(s):  
Elena Tresso ◽  
V. Ballarini ◽  
A. Chiodoni ◽  
R. Gerbaldo ◽  
G. Ghigo ◽  
...  

AbstractThe unique properties of superconductors such as radiation hardness and high microwave performances [1-3] make the integration with semiconductor conventional electronics a stimulating challenge. Many attempts have been tried to obtain good quality YBa2Cu3O7-x (YBCO) films on Si substrates, with the aim of taking advantage from the properties of both materials, but interdiffusion reactions and a poor lattice and thermal expansion coefficient matching require the use of a buffer layer at the semiconductor/superconductor interface. Yttria-stabilized zirconia (YSZ), Y2O3, MgO, SrTiO3, CeO2 and their combinations have been proposed and used as buffer layers in the case of Si/YBCO systems. In this paper we report on annealing treatments performed on Si/CeO2 bilayers. A set of optimized samples with deposition temperatures ranging from 100°C to 800°C has been radiatively heated at two different annealing temperatures, in N2 and O2 atmospheres. All the samples have been characterized by X-ray diffraction, Atomic Force Microscopy, micro-Raman spectroscopy. The preferential grain orientation, the lattice parameter, the crystals dimensions, the surface roughness have been studied. As a preliminary tentative, we report on YBCO film growth on the top of CeO2/Si optimized bi-layer before undergoing annealing treatment. This YBCO film resulted to be a-axis preferential oriented, with some contribution of c-axis oriented grains.


2019 ◽  
Vol 17 (41) ◽  
pp. 29-39
Author(s):  
Alaa A. Abdul-hamead

For the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic phase FeWO4 films with spindle and aggregated fine plates microstructures were obtained from using this advance technique, with thickness about 500 nm. Such these structures have been recognized as one of the most efficient microstructures due to their large specific surface area especially in gas sensor applications.


Sign in / Sign up

Export Citation Format

Share Document