Effect of 1% Ce Addition on Microstructures and Mechanical Properties of As-Cast Mg-3.8Zn-2.2Ca (wt.%) Magnesium Alloy

2011 ◽  
Vol 686 ◽  
pp. 80-83
Author(s):  
Ming Bo Yang ◽  
Cai Yuan Qin ◽  
Yi Zhu ◽  
Liang Cheng

In this paper, the effect of adding 1.0 wt.% Ce on the as-cast microstructure and mechanical properties of the Mg-3.8Zn-2.2Ca (wt.%) magnesium alloy were investigated. The results indicate that, after adding 1.0 wt.%Ce to the Mg-3.8Zn-2.2Ca alloy, small amounts of Mg12Ce phase are formed and an obvious equiaxed trendance is observed. At the same time, the average grain size decreases from 234mm to 71mm and the morphology of some Ca2Mg6Zn3phases changes from initial coarse blocks to fine particles. In addition, adding 1.0 wt.%Ce to the Mg-3.8Zn-2.2Ca alloy also improve the tensile and creep properties of the alloy. Further investigations need to be considered in order to optimize the amounts of Ce additions and understand its effects on the tensile and creep properties and age-hardening behaviour.

2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


2014 ◽  
Vol 488-489 ◽  
pp. 154-157
Author(s):  
Lei Lei Chen ◽  
Quan An Li ◽  
Jiang Chang Xie

By the scanning electron microscopy, the microstructure and mechanical properties testing, the effect of Ca and Y on the microstructure and mechanical properties of magnesium alloy AZ81 are investigated in this paper. The results show that with Ca and Y addition, the grain size is refined. And with the β-Mg17Al12 phase reducing significantly, there will be the precipitation of Al2Ca and Al2Y. Meanwhile, the mechanical properties of AZ81 magnesium alloy are enhanced at room temperature and 150°C.


2012 ◽  
Vol 706-709 ◽  
pp. 1261-1266 ◽  
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Xin Tao Liu ◽  
Hao Zhou

Repetitive upsetting (RU) was applied to a commercial AZ31 Mg alloy. The samples were processed at temperatures of 230 °C, 250 °C and 300 °C up to 3 passes. Effects of processing temperature on the microstructure and mechanical properties were investigated. The results indicate that the microstructure was effectively refined by RU and an average grain size of ~1.9 μm was obtained at 250 °C. Increasing the temperature resulted in larger mean grain size and higher microstructural homogeneity. Both the strength and hardness were significantly improved. It was also found that increasing the processing temperature led to increase in the strength but decrease in the ductility. The sample after RU 3 passes at 230 °C had tensile strength of 330 MPa compared with 173 MPa prior to the processing.


2012 ◽  
Vol 468-471 ◽  
pp. 2124-2127 ◽  
Author(s):  
Shao Feng Zeng ◽  
Kai Huai Yang ◽  
Wen Zhe Chen

Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K. Microstructures and mechanical properties of as-received and ECAP deformed samples were investigated. The microstructure was initially not uniform with a “bimodal” grain size distribution but became increasingly homogeneous with further ECAP passes and the average grain size was considerably reduced from over 26 μm to below 5 μm. The ultimate tensile strength (UTS) decreases clearly after one pass, but increases significantly up to two passes, and then continuously slowly decreases up to six passes, and again increases slightly up to eight passes. In contrast, the uniform elongation increased significantly up to 3 passes, followed by considerable decrease up to 8 passes. These observations may be attributed to combined effects of grain refinement and texture development.


2009 ◽  
Vol 610-613 ◽  
pp. 746-749 ◽  
Author(s):  
Jia Shen ◽  
Ming Bo Yang ◽  
Fu Sheng Pan ◽  
Ren Ju Cheng

The as-cast microstructures and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc and Mg-3Ce-1.2Mn-1Zn magnesium alloys were investigated and compared. The results indicate that the as-cast microstructure of Mg-3Ce-1.2Mn-0.9Sc alloy was mainly composed of -Mg, Mg12Ce and Mn2Sc phases, and that the as-cast microstructure of Mg-3Ce-1.2Mn-1Zn alloy was mainly composed of -Mg, Mg12Ce and MgZn phases. In addition, the as-cast tensile and creep properties of Mg-3Ce-1.2Mn-0.9Sc alloy were higher than that of the Mg-3Ce-1.2Mn-1Zn alloy. The difference of the two alloys in as-cast tensile and creep properties may be related to the initial microstructures of the two alloys.


2014 ◽  
Vol 881-883 ◽  
pp. 1396-1399
Author(s):  
Chen Jun ◽  
Quan An Li

The microstructure and mechanical properties of magnesium alloy AZ61wtih1% Sn addition has been studied in this paper. The results show that the addition of 1% Sn can refine the grain size and improve the microstructure morphology of β-Mg17Al12 phase. The addition of Sn can cause the formation of Mg2Sn phase in AZ61 alloy, which can effectively enhance the mechanical properties of magnesium alloy AZ61 at room temperature and 150°C.


2014 ◽  
Vol 1004-1005 ◽  
pp. 158-162 ◽  
Author(s):  
Xiang Ting Hong ◽  
Fu Chen ◽  
Fei Chen ◽  
Wang Yu ◽  
Bo Rong Sang ◽  
...  

Microstructures of metal micro parts after microforming at elevated temperatures must be evaluated due to mechanical properties depend on average grain size. In this work, the effects of specimen diameter on the microstructure and microhardness of a hot-extruded AZ31B magnesium alloy were studied. Obvious size effect on microstructure and microhardness of the alloy could be observed. The size effects could be explained by strain distribution and dislocation density differences between the two kinds of specimens.


2011 ◽  
Vol 683 ◽  
pp. 103-112 ◽  
Author(s):  
B. Yang

The evolution of the microstructure and mechanical properties of electrodeposited nanocrystalline Ni with different annealing procedures was studied systematically. For the annealed specimens hardness decreases with increasing average grain size but the dependence changes at different grain size ranges. The specimens annealed at a low temperature show higher hardness compared to the as-deposited nanocrystalline Ni, despite an increased measured average grain size. In association with this hardening an increase in elastic modulus and a decrease in microstrain was observed after annealing. With increasing annealing temperature both the tensile strength and the fracture strain were observed to decrease, this is companied with a transition from ductile to brittle in the fracture surfaces. These results indicated that the mechanical behaviour of nanocrystalline Ni depends not only on the average grain size but also on the grain boundary structure. A change in the grain boundary state arising from annealing may be responsible for the observed increase in hardness and elastic modulus as well as the deterioration of tensile properties.


2009 ◽  
Vol 610-613 ◽  
pp. 826-830
Author(s):  
Tian Mo Liu ◽  
Wei Hui Hu ◽  
Qing Liu

The microstructures and mechanical properties of cold upsetting magnesium alloys were investigated upon anneal under different conditions. The results show that a large amount of twins were observed in the original grains of cold upsetting AZ31 magnesium alloys. The twins disappeared gradually and recrystal grains formed after anneal. The volume fraction of the recrystal grains increases as the strain of samples rises. Recrystal grain size grows large with the elevated annealing temperature. Recrystal grain size reduces at first and then grows as the annealing time is prolonged. In addition, compared with as-cast magnesium alloys, the yield strength of cold upsetting samples increase apparently due to grain refinement after anneals.


2016 ◽  
Vol 850 ◽  
pp. 784-789
Author(s):  
Song Lin Chen ◽  
Da Tong Zhang

AZ31 magnesium alloy was friction stir spot welded in air and cooling in water. The effect of the enhanced cooling rate on the microstructure and mechanical properties of the joint was analyzed. The results showed that flowing water had obvious cooling effect instantaneously, which significantly restrained the growth of dynamic recrystallized grains. The average grain size in stir zone was 1.3μm in cooling water condition, which is far smaller than that of the joint prepared in air cooling condition. Under the condition of enhanced cooling, the microhardness in stir zone significantly increased, the ultimate tensile load (~ 3.99kN) increased by 15.7%, and the tensile deformation value (~ 3.65 mm) increased by 62.2%. Dimples in SEM fracture morphologies indicated the better plastic deformation capacity of joints prepared by cooling water, which failed through a mixture mode of ductile and brittle fracture.


Sign in / Sign up

Export Citation Format

Share Document