scholarly journals Compressive Strength, Chloride Ion Penetrability, and Carbonation Characteristic of Concrete with Mixed Slag Aggregate

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 940
Author(s):  
Se-Jin Choi ◽  
Young-Uk Kim ◽  
Tae-Gue Oh ◽  
Bong-Suk Cho

The shortage of natural aggregates has recently emerged as a serious problem owing to the tremendous growth of the concrete industry. Consequently, the social interest in identifying aggregate materials as alternatives to natural aggregates has increased. In South Korea’s growing steel industry, a large amount of steel slag is generated and discarded every year, thereby causing environmental pollution. In previous studies, steel slag, such as blast furnace slag (BFS), has been used as substitutes for concrete aggregates; however, few studies have been conducted on concrete containing both BFS and Ferronickel slag (FNS) as the fine aggregate. In this study, the compressive strength, chloride ion penetrability, and carbonation characteristic of concrete with both FNS and BFS were investigated. The mixed slag fine aggregate (MSFA) was used to replace 0, 25%, 50%, 75%, and 100% of the natural fine aggregate volume. From the test results, the highest compressive strength after 56 days was observed for the B/F100 sample. The 56 days chloride ion penetrability of the B/F75, and B/F100 samples with the MSFA contents of 75% and 100% were low level, approximately 34%, and 54% lower than that of the plain sample, respectively. In addition, the carbonation depth of the samples decreased with the increase in replacement ratio of MSFA.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5879
Author(s):  
Sung-Ho Bae ◽  
Jae-In Lee ◽  
Se-Jin Choi

Recently, interest in environmentally friendly development has increased worldwide, especially in the construction industry. In this study, blast furnace slag powder (BFSP) and mixed steel fine aggregates were applied to cement mortars to reduce the environmental damage caused by the extraction of natural aggregate and to increase the recycling rate of steel by-products in the construction industry. We investigated the fluidity, compressive strength, tensile strength, accelerated carbonation depth, and chloride ion penetration resistance of mortars with steel slag aggregate and their dependence on the presence or absence of BFSP. Because the recycling rate of ferronickel slag is low and causes environmental problems, we considered mortar samples with mixed fine aggregates containing blast furnace slag fine aggregate (BSA) and ferronickel slag fine aggregate (FSA). The results showed that the 7-day compressive strength of a sample containing both 25% BSA and 25% FSA was nearly 14.8% higher than that of the control sample. This trend is likely due to the high density and angular shape of steel slag particles. The 56-day compressive strength of the sample with BFSP and 50% FSA was approximately 64.9 MPa, which was higher than that of other samples with BFSP. In addition, the chloride ion penetrability test result indicates that the use of BFSP has a greater effect than the use of steel slag aggregate on the chloride ion penetration resistance of mortar. Thus, the substitute rate of steel slag as aggregate can be substantially enhanced if BFSP and steel slag aggregate are used in an appropriate combination.


Eng ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 48-59
Author(s):  
Ahmed Maher El-Tair ◽  
Ramez Bakheet ◽  
Mohamed Samy El-Feky ◽  
Mohamed Kohail ◽  
Shatirah Akib

Aggregates are generally thought of as inert filler within a concrete mix, and a typical concrete mix is comprised of as much as 70–80% of them. They play an essential role in the properties of both fresh and hardened concrete. Nowadays, scientists are aiming to use waste materials, thereby replacing natural aggregates for economic and environmental considerations. This study investigates the effect of the utilization of steel slag by-product aggregates (air- and water-cooled slag) as concrete aggregates on the behavior characteristics of concrete. Various concrete mixtures, with different levels of replacement of slag aggregate (50, 75, and 100%), were conducted in order to find the optimum percentages to improve the microstructure and different properties of concrete (fresh and hardened). The results showed that increasing the fine aggregate replacement percentage led to a decrease in compressive strength values, in contrast with coarse aggregate replaced with slag aggregate. The steel slag aggregates showed potential to be used as replacement for natural aggregate with comparable compressive strength and acceptable workability.


2021 ◽  
Vol 309 ◽  
pp. 01132
Author(s):  
Raju Suram ◽  
T. Srinivas ◽  
Vegiraju Naresh kumar Varma

The Plastic is a part of our lives due to its daily usage. So, the consumption of plastic is increasing every year. The decomposition of plastic takes more than thousand years because of its non-biodegradable nature. The plastic harms the society and surrounding environment in all aspects. So, the best way to control the pollution posed by the plastic is recycling. The exponential growth in construction industry, the demand for natural aggregates increases but leads to depletion of natural resources. To overcome this issue plastic used as a fine aggregate replacement in concrete. The majority of the waste coming from the plastic bottles (Polyethylene Terephthalate) and food containers (Polypropylene). So, the recycled Polyethylene Terephthalate and Polypropylene used as a fine aggregate in concrete with percentages of 5%,10%,15%. This paper objective is to assess the effect of Polyethylene Terephthalate and Polypropylene on compressive strength and workability. The workability and compressive strength of PET and PP have given good results up to10%and 5%. It has been observed from the test results that 5% and 10% is optimum for Polypropylene (PP) and Polyethylene Terephthalate (PET)as fine aggregate in concrete respectively.


2011 ◽  
Vol 695 ◽  
pp. 287-290
Author(s):  
J. M. Zhao ◽  
Z. X. Yang ◽  
Kyu Hong Hwang ◽  
M. C. Kim

To replace bottom ash for natural sand completely, the mix proportions of bottom ash in concrete was adjusted according to tab density and replacement ratio of Metakaolin/Cement were established. And then testing for slump, setting time, and compressive strength was conducted. According to test results, the compressive strength of concrete using the bottom ash was lower than that of concrete using natural sand (BAO concrete). But by adjusting the amount of bottom ash in concrete according tab density so that the fine aggregate proportions change 44% to 38%, the compressive strength of concrete using the bottom ash could even be higher than BAO concrete. And the chloric content of concrete using the bottom ash increased as the replacement ratio of bottom ash increased, but it is satisfied with the chloric content of fresh concrete 0.30 kg/m2 below (concrete standard specification regulation value).


2020 ◽  
Vol 1005 ◽  
pp. 47-56
Author(s):  
Chung Hao Wu ◽  
Hsien Sheng Peng ◽  
How Ji Chen

This study aims to develop the mix proportion of concrete incorporating water purification sludge (WPS), as parts of fine aggregate and consequently investigate its mechanical properties and durability. The experiments involve three sludges from Da-Nan, Lin-Nei and Nan-Hua water treatment plants in Taiwan. In addition to the control mixture without WPS, four replacement levels of 20%, 40%, 60% and 80% of fine aggregate were selected for preparing the concrete mixture. The concretes tested were designed to have three target compressive strengths of 14MPa, 18MPa and 21MPa. Test results show that the compressive strengths of the Da-Nan and Lin-Nei WPS concretes meet the design requirements, and the strength of the Nan-Hua WPS concrete is lower to be only suitable for application in low strength concretes. The shrinkage deformation of the Da-Nan and Lin-Nei WPS concretes increase with the increase of sludge replacement level, however, the shrinkage deformation decreases with the increase of the compressive strength of concrete. If the sludge replacement ratio is less than 40%, its effect on the compressive strength of the Da-Nan and Lin-Nei WPSs concrete is limited whether they are cured in water or in the air.


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2010 ◽  
Vol 163-167 ◽  
pp. 1651-1654 ◽  
Author(s):  
Jin Bang Wang ◽  
Zong Hui Zhou

Several series of concrete aggregates with different content of steel slag, blast furnace slag, coal gangue and fly ash were prepared. The reasonable ratio of raw materials and process parameters to prepare the aggregates were determined by measuring the water absorption, crush indicators and apparent density of the aggregates. The mineral composition and morphology of the aggregates were analyzed by XRD, SEM and EDS. The results showed the aggregate with about 30% steel slag, 50% slag, 20% gangue, and calcined at 1300°C for 90 minutes had the best performance. The water absorption of the aggregate is about 1.55% which is lower than that of the natural aggregates (about 2.2% on average). Both the crushing index (about 11.39%) and the apparent density (2672 kg/m3) of the aggregate meet the requirements of national standards.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


Sign in / Sign up

Export Citation Format

Share Document