Study of the Spinning Mechanism Resulting from Permanent Magnet Linear Actuation

2012 ◽  
Vol 721 ◽  
pp. 255-260
Author(s):  
Koichi Oka ◽  
Feng Sun ◽  
Akira Tsurumi ◽  
Gota Nakamura

This paper describes an analysis of torque characteristics of a noncontact spinning system using linearly actuated magnets. This noncontact spinning system spins the suspended object (here is an iron ball) without contact by the remanent magnetization and the linear movement of four permanent magnets. In this paper, the remanent magnetization point is modeled, and the rotational torque of this mechanism is calculated by IEM (Integral Element Method) analysis. The rotational torque is also measured using a measurement device with strain gauges. According to the IEM analysis results and the experimental results, the rotational torque characteristics of the noncontact spinning system are discussed.

1987 ◽  
Vol 96 ◽  
Author(s):  
M. Sagawa ◽  
S. Hirosawa

ABSTRACTThe state-of-the-art description of the magnetic hardening mechanism in the sintered Nd-Fe-B permanent magnet is given. Recent experimental results concerning the coercivity-anisotropy (Hc -HA) correlation in B-rich Pr-Fe-B and Nd-Fe-B sintered magnets and the inhluence of the surface conditions of the sintered Nd-Fe-B magnets on the coercivity are reported. These results are interpreted in terms of the μ0Hc versus cμ0 HA -NIS plot, where I is the spontaneous magnetization of R2 Fe14 (R=Pr or Nd) and N the effective demagnetization field coefficient.


2012 ◽  
Vol 586 ◽  
pp. 328-336
Author(s):  
Qiang Li ◽  
Deng Feng Xu ◽  
Jin Chun Hu ◽  
Liu Hao

Magnetic suspension vibration isolators have attracted significant attention in the field of semiconductor industry and high precision equipments. However, it is impossible to levitate an object by only permanent magnet due to instability of permanent magnets. It needs a guide device or active control to hold the magnetic suspension passive vibration isolator (MSPVI) at equilibrium position. In order to overcome the instability of the permanent magnets, the linear bearing, rubber O-ring and rubber membrane are applied in the MSPVI. The transmissibility of the MSPVI was calculated and subsequently measured. The experimental results show that the MSPVI can achieve low natural frequency with the help of the rubber membrane which is superior to the linear bearing and o-ring. Beside, the vibration isolating performance of the MSPVI is measured. The experimental results reveal that the MSPVI achieves the lowest resonant frequency when the load capacity of the MSPVI reaches maximum value.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3526
Author(s):  
Marilia A. da Silveira ◽  
Marcos J. Susin ◽  
Aly F. Flores Filho ◽  
David G. Dorrell

This work presents a study of the traction, normal and stall forces in a two-sided planar actuator with orthogonal planar windings and a mover that comprises two cars magnetically coupled to each other through two pairs of permanent magnets (PMs). There is no ferromagnetic armature core because of the permanent magnets array in the mover and orthogonal traction forces can be generated in order to move both cars jointly in any direction on a plane. The stall force is the minimal force necessary to break up the magnetic coupling between the two cars. When one of the cars is subjected to an external force through the x- or y-axis, the cars can become out of alignment with respect to each other and the planar actuator cannot work properly. The behavior of the forces was modelled by numerical and analytical methods and experimental results were obtained from tests carried out on a prototype. The average sensitivity of the measured static propulsion planar force along either axis is 4.48 N/A. With a 20-mm displacement between the cars along the direction of the x-axis and no armature current, a magnetic stall force of 17.26 N is produced through the same axis in order to restore the alignment of the two cars


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2018 ◽  
Vol 69 (8) ◽  
pp. 1992-1995
Author(s):  
Dan Dragos Sita ◽  
Ligia Brezeanu ◽  
Cristina Bica ◽  
Dana Manuc ◽  
Edwin Sever Bechir ◽  
...  

The purpose of the study is to assess through a FEM (Finite Element Method analysis), the behavior of a complex structure (enamel-tooth-alveolar bone-periodontal ligament-pulp), subjected to an external load through an orthodontic bracket-with forces of various intensities and to determine its influence on the entire structure.It is necessary to analyze the way all elements of the structure take over the external action given by the action of an orthodontic appliance through the brackets and the influence on the inner component -the pulp-inside of which there are the nerve endings.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Chunyan Li ◽  
Fei Guo ◽  
Baoquan Kou ◽  
Tao Meng

A permanent magnet synchronous motor (PMSM) based on the principle of variable exciting magnetic reluctance (VMRPMSM) is presented. The motor is equipped with symmetrical non-magnetic conductors on both sides of the tangential magnetized permanent magnets (PMs). By placing the non-magnetic conductor (NMC), the magnetic reluctance in the exciting circuit is adjusted, and the flux weakening (FW) of the motor is realized. Hence, the NMC is studied comprehensively. On the basis of introducing the motor structure, the FW principle of this PMSM is described. The shape of the NMC is determined by analyzing and calculating the electromagnetic force (EF) acting on the PMs. We calculate the magnetic reluctance of the NMC and research on the effects of the NMC on electromagnetic force, d-axis and q-axis inductance and FW performance. The critical speeds from the test of the no-load back electromotive force (EMF) verify the correctness of the NMC design. The analysis is corresponding to the test result which lays the foundation of design for this kind of new PMSM.


Sign in / Sign up

Export Citation Format

Share Document