Study on Interface Characteristics of Al/Mg/Al Composite Plates Fabricated by Two-Pass Hot Rolling

2013 ◽  
Vol 747-748 ◽  
pp. 346-351 ◽  
Author(s):  
Chang Zeng Luo ◽  
Wei Liang ◽  
Xian Rong Li ◽  
Ya Jun Yao

In this study, 5052/AZ31B/5052 composite plates were fabricated by two-pass hot rolling, under the rolling parameters 623 K/15 min/40% for the first pass and 673 K/10 min/50% for the second pass. The structure and element change in the zone of the joint interface were studied by means of optical microscope (OM), scanning electron microscope (SEM), and energy diffraction spectrum (EDS). The results showed that the bonding mode of the joint interface between AZ31B and 5052 alloy was metallic bonding after the first pass hot rolling, but the bonding mode of the finished composite plate appeared the distribution characteristic alternating with metallic bonding and metallurgical bonding. Two distinct intermediate layers including Mg17Al12and Al3Mg2can be clearly observed in the joint interface. During the second pass hot rolling, the AZ31B and 5052 layer were elongated along the rolling direction, while the Al3Mg2and Mg17Al12layers were up in the joint interface. After the tensile strength testing of the composite plate, the interface bonding appeared very well without any debonding.

2021 ◽  
Author(s):  
Zhi-xiong Bi ◽  
Xue-jiao Li ◽  
Ting-zhao Zhang ◽  
Quan Wang ◽  
Kai Rong ◽  
...  

Abstract In order to study the interface characteristics and microstructure formation of Ti-Al composite plate, explosive welding was carried out with TA2 titanium as the fly plate and 5083 aluminums as the base plate. Optical microscope and electron microscope were used to analyze the microstructure of intermetallic compounds. SPH method was used to simulate the welding process of composite plates. The formation conditions and initial defects of intermetallic compounds were analyzed. The results show that most of the melted metal in the wave-front stays in the wave-waist region, and there was a relative velocity difference between the vortex and the titanium tissue, which led to the existence of small pieces of fragmentation. The outer layer of the vortex had higher velocity than the inner layer. The formation of Ti3Al, its antioxidant capacity wound lead to the formation of cracks. The temperature of outer vortex was higher than that of inner vortex, and the vortex has a transition layer of 5 μm, which is thinner than the transition layer of 8 μm between cladding plate and substrate. The jet was mostly composed of aluminum metal, and the interface jet velocity reaches 3000 m·s-1 and the interface temperature reaches up to 2100 K. Compared with the molten metal in the wave-back vortex, the jet temperature at the interface was higher, resulting in a thicker transition layer at the bonding surface. The residual stress at the interface wound cause the density of the material to increase.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 989
Author(s):  
Donghyun Lee ◽  
Junghwan Kim ◽  
Sang-Kwan Lee ◽  
Yangdo Kim ◽  
Sang-Bok Lee ◽  
...  

In this study, to evaluate the effect of boron carbide (B4C) addition on the wear performance of aluminum (Al), Al6061 and 5, 10, and 20 vol.% B4C/Al6061 composites were manufactured using the stir casting and hot rolling processes. B4C particles were randomly dispersed during the stir casting process; then, B4C particles were arranged in the rolling direction using a hot rolling process to further improve the B4C dispersion and wear resistance of the composites. Furthermore, a continuous interfacial layer between B4C and the Al6061 matrix was generated by diffusion of titanium (Ti) and chromium (Cr) atoms contained in the Al6061 alloy. Wear depth and width of the composites decreased with increasing B4C content. Furthermore, with B4C addition, coefficient of friction (COF) improved as compared with that of Al6061. The results indicate that interface-controlled, well-aligned B4C particles in the friction direction can effectively increase the wear properties of Al alloys and improve their hardness.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
Emin Ergun

The aim of this study is to investigate, experimentally and numerically, the change of critical buckling load in composite plates with different ply numbers, orientation angles, stacking sequences and boundary conditions as a function of temperature. Buckling specimens have been removed from the composite plate with glass-fibre reinforcement at [0°]i and [45°]i (i= number of ply). First, the mechanical properties of the composite material were determined at different temperatures, and after that, buckling experiments were done for those temperatures. Then, numerical solutions were obtained by modelling the specimens used in the experiment in the Ansys10 finite elements package software. The experimental and numerical results are in very good agreement with each other. It was found that the values of the buckling load at [0°] on the composite plates are higher than those of other angles. Besides, symmetrical and anti-symmetrical conditions were examined to see the effect of the stacking sequence on buckling and only numerical solutions were obtained. It is seen that the buckling load reaches the highest value when it is symmetrical in the cross-ply stacking sequence and it is anti-symmetrical in the angle-ply stacking sequence.


Author(s):  
Yu Cheng Liu ◽  
Jin Huang Huang

This paper mainly analyzes the wave dispersion relations and associated modal pattens in the inclusion-reinforced composite plates including the effect of inclusion shapes, inclusion contents, inclusion elastic constants, and plate thickness. The shape of inclusion is modeled as spheroid that enables the composite reinforcement geometrical configurations ranging from sphere to short and continuous fiber. Using the Mori-Tanaka mean-field theory, the effective elastic moduli which are able to elucidate the effect of inclusion’s shape, stiffness, and volume fraction on the composite’s anisotropic elastic behavior can be predicted explicitly. Then, the dispersion relations and the modal patterns of Lamb waves determined from the effective elastic moduli can be obtained by using the dynamic stiffness matrix method. Numerical simulations have been given for the various inclusion types and the resulting dispersions in various wave types on the composite plate. The types (symmetric or antisymmetric) of Lamb waves in an isotropic plate can be classified according to the wave motions about the midplane of the plate. For an orthotropic composite plate, it can also be classified as either symmetric or antisymmetric waves by analyzing the dispersion curves and inspecting the calculated modal patterns. It is also found that the inclusion contents, aspect ratios and plate thickness affect propagation velocities, higher-order mode cutoff frequencies, and modal patterns.


2013 ◽  
Vol 813 ◽  
pp. 43-46
Author(s):  
Hob Yung Kim ◽  
Jae Sook Song ◽  
Sun Ig Hong

3-ply Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite plates were prepared by roll bonding at 823K and their properties were characterized. No intermetallic compounds were observed at Cu-Ni-Zn/Cu-Cr interfaces in the as-rolled and heat-treated Cu/Ni-Zn/Cu-Cr/Cu-Ni-Zn clad plates. The strength of as-rolled clad plate reached up to 420MPa with the ductility of 13%. After heat treatment at 723K for 1.5 hours, the strength of Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite plate dropped to 340 MPa and the ductility increased to 20%. With annealing at 723K, there is no drastic drop of the stress before final fracture, meaning three plates were bonded together until the last part of the stress-strain curve. The peak of the conductivity (>70% of IACS) was attained after aging for 1.5 hrs, compatible with the typical peak aging condition of Cu-Cr alloy.


2021 ◽  
Vol 901 ◽  
pp. 193-198
Author(s):  
Yuh Ping Chang ◽  
Li Ming Chu ◽  
Chien Te Liu ◽  
Jin Chi Wang ◽  
Gao Wei Chen

Due to the booming development of the automation industry and the transportation industry, the mechanical components are prone to wear under long-term operating conditions. To improve the wear resistance, effects of the rolling directions on wear of the aluminum alloys are studied. An optical microscope is used to analyze the crystal phase, and the correlation between the crystal grains and the rolling direction is studied. This study can therefore establish a key technology for improving the wear resistance of aluminum alloys.


2006 ◽  
Vol 326-328 ◽  
pp. 1765-1768 ◽  
Author(s):  
Meng Kao Yeh ◽  
Kuei Chang Tung

The dynamic instability behavior of delaminated composite plates under transverse excitations was investigated experimentally and analytically. An electromagnetic device, acting like a spring with alternating stiffness, was used to parametrically excite the delaminated composite plates transversely. An analytical method, combined with the finite element method, was used to determine the instability regions of the delaminated composite plates based on the modal parameters of the composite plate and the position, the stiffness of the electromagnetic device. The delamination size and position of composite plates were varied to assess their effects on the excitation frequencies of simple and combination resonances in instability regions. The experimental results were found to agree with the analytical ones.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2041
Author(s):  
Janusz Cebulski ◽  
Dorota Pasek ◽  
Bartosz Chmiela ◽  
Magdalena Popczyk ◽  
Andrzej Szymon Swinarew ◽  
...  

The paper presents the results of tests on the corrosion resistance of Fe40Al5Cr0.2TiB alloy after casting, plastic working using extrusion and rolling methods. Examination of the microstructure of the Fe40Al5Cr0.2TiB alloy after casting and after plastic working was performed on an Olympus GX51 light microscope. The stereological relationships of the alloy microstructure in the state after crystallization and after plastic working were determined. The quantitative analysis of the structure was conducted after testing with the EBSD INCA HKL detector and the Nordlys II analysis system (Channel 5), which was equipped with the Hitachi S-3400N microscope. Structure tests and corrosion tests were performed on tests cut perpendicular to the ingot axis, extrusion direction, and rolling direction. As a result of the tests, it was found that the crystallized alloy has better corrosion resistance than plastically processed material. Plastic working increases the intensity of the electrochemical corrosion of the examined alloy. It was found that as-cast alloy is the most resistant to corrosion in a 5% NaCl compared with the alloys after hot extrusion and after hot rolling. The parameters in this study show the smallest value of the corrosion current density and corrosion rate as well as the more positive value of corrosion potential.


Author(s):  
Da-Ming Chen ◽  
Y. F. Xu ◽  
W. D. Zhu

A worldwide round robin study is sponsored by the Society of Experimental Mechanics to detect damage in a composite plate with a scanning laser Doppler vibrometer (SLDV). The aim of this round robin study is to explore the potential of a SLDV for detection of damage in composite plates. In this work, a curvature-based damage detection method with use of a continuously SLDV (CSLDV) is proposed. A CSLDV can be regarded as a real-time moving sensor, since the laser spot from the CSLDV continuously moves on a structure surface and measures velocity response. An operating deflection shape (ODS) of the damaged composite plate can be obtained from velocity response by the demodulation method. The ODS of the associated undamaged composite plate is obtained by using polynomials to fit the ODS of the damaged plate. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with the ODSs from the demodulation method and the polynomial fit is proposed to detect damage. With the proposed curvature-based damage detection method, locations of two possible damage are detected in areas with consistently high CDI values at two excitation frequencies, which are in good agreement with prescribed damage locations.


2013 ◽  
Vol 22 (2) ◽  
pp. 096369351302200
Author(s):  
Ashraf M. Zenkour ◽  
Ibrahim A. Abbas

Different plate theories are presented to study the thermoelastic response of a multilayered angle-ply composite plate. The plate is subjected to a sinusoidal temperature and resting on different types of elastic foundations. The effects due to thermal loads and elastic foundations parameters as well as the variation of lamination angle are studied. Numerical results suggest that Pasternak's model should be used for such plates resting on elastic foundations.


Sign in / Sign up

Export Citation Format

Share Document